cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249403 Decimal expansion of the maximum M(7) of the ratio (Sum_{k=1..7} (x(1)*x(2)*...*x(k))^(1/k))/(x(1) + ... + x(7)) taken over x(1), ..., x(7) > 0.

Original entry on oeis.org

1, 5, 8, 0, 0, 3, 7, 2, 1, 0, 6, 3, 2, 0, 5, 2, 3, 5, 2, 0, 8, 4, 0, 6, 3, 4, 9, 8, 1, 8, 3, 2, 6, 4, 4, 9, 2, 1, 1, 2, 8, 1, 5, 8, 0, 5, 9, 1, 6, 5, 9, 6, 1, 9, 7, 0, 1, 7, 4, 2, 3, 6, 9, 2, 0, 6, 0, 1, 5, 3, 7, 3, 7, 1, 0, 5, 3, 7, 7, 1, 1, 3, 5, 9, 2, 3, 5, 6, 4, 8, 0, 9, 0, 2, 1, 7, 0, 1, 4, 4, 8, 7, 0, 9, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 27 2014

Keywords

Comments

M(2) = (1+sqrt(2))/2, M(3) = 4/3.
M(n) = exp(1) - 2*Pi^2*exp(1)/(log(n))^2 + O(1/(log(n))^3), [de Bruijn, 1963].

Examples

			1.5800372106320523520840634981832644921128158059165961970174236920601537371...
		

References

  • N. G. de Bruijn, Carleman's inequality for finite series, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag, Math., 25:505-514, 1963.
  • R. Witula, D. Jama, D. Slota, E. Hetmaniok, Finite version of Carleman's and Knopp's inequalities, Zeszyty naukowe Politechniki Slaskiej (Gliwice, Poland) 92 (2010), 93-96.

Crossrefs

Cf. A174968 = M(2), A219245 = M(4), A219246 = M(5), A219336 = M(6).

Programs

  • Mathematica
    RealDigits[c7/.FindRoot[{1 + x2/2 + x3/3 + x4/4 + x5/5 + x6/6 + x7/7 == c7, x2/2 + x3/3 + x4/4 + x5/5 + x6/6 + x7/7 == c7*x2^2, x3/3 + x4/4 + x5/5 + x6/6 + x7/7 == c7*x3^3/x2^2, x4/4 + x5/5 + x6/6 + x7/7 == c7*x4^4/x3^3, x5/5 + x6/6 + x7/7 == c7*x5^5/x4^4, x6/6 + x7/7 == c7*x6^6/x5^5, x7/7 == c7*x7^7/x6^6}, {{c7, 3/2}, {x2, 1/2}, {x3, 1/2}, {x4, 1/2}, {x5, 1/2}, {x6, 1/2}, {x7, 1/2}}, WorkingPrecision->120], 10, 105][[1]]