This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249430 #23 Aug 28 2025 00:04:57 %S A249430 1,0,350,439,174,713,323,1923,1052,999,1766,3749,2254,2253,1934,3391, %T A249430 4184,4463,3144,5451,9698,16279,6398,5123,2974,12863,19094,4299,16574, %U A249430 5749 %N A249430 a(n) = Least integer k such that A249431(k) = n, and -1 if no such integer exists. %C A249430 a(n) = the least natural number k such that {product of elements on row k of Pascal's triangle} is divisible by (k+n)! but not by (k+n+1)! %C A249430 Note: a(18) = 3144 and a(24) = 2974. First values k for which A249431(k) = 16 and 17, if they exist, are larger than 4096. %o A249430 (Scheme) (define (A249430 n) (let loop ((k 0)) (cond ((= n (A249431 k)) k) (else (loop (+ 1 k)))))) %o A249430 (Python) %o A249430 from itertools import count %o A249430 from math import factorial %o A249430 def A249430(n): %o A249430 f = factorial(n) %o A249430 g = f*(n+1) %o A249430 pascal = [1] %o A249430 for k in count(0): %o A249430 a = 1 %o A249430 for i in range(k+1): %o A249430 a = a*pascal[i]%f %o A249430 if not a: %o A249430 b = 1 %o A249430 for i in range(k+1): %o A249430 b = b*pascal[i]%g %o A249430 if b: %o A249430 return k %o A249430 f = g %o A249430 g *= k+n+2 %o A249430 pascal = [1]+[pascal[i]+pascal[i+1] for i in range(k)]+[1] # _Chai Wah Wu_, Aug 18 2025 %Y A249430 Nonnegative terms are all members of A249434. %Y A249430 Cf. A000142, A001142, A007318, A249151, A249431, A249432. %K A249430 nonn,more,changed %O A249430 0,3 %A A249430 _Antti Karttunen_, Nov 02 2014 %E A249430 a(16)-a(20) from _Chai Wah Wu_, Aug 19 2025 %E A249430 a(21)-a(29) from _Chai Wah Wu_, Aug 27 2025