cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249441 a(n) is the smallest prime whose square divides at least one entry in the n-th row of Pascal's triangle, or 0 if there is no such prime.

This page as a plain text file.
%I A249441 #53 Jul 30 2018 12:46:57
%S A249441 0,0,0,0,2,0,2,0,2,2,2,0,2,2,2,3,2,2,2,2,2,2,2,0,2,2,2,2,2,2,2,3,2,2,
%T A249441 2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,
%U A249441 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N A249441 a(n) is the smallest prime whose square divides at least one entry in the n-th row of Pascal's triangle, or 0 if there is no such prime.
%C A249441 a(n) = 3 for 15, 31, 47, 63, 95, 127, 191, 255, 383, 511, 767, 1023, 1535, 2047, 3071, etc.
%C A249441 The above values all occur in A249723 and from 31 onward seem to be given by A052955(n>=8). (Cf. also A249714 & A249715). - _Antti Karttunen_, Nov 04 2014
%C A249441 Using the Kummer theorem on carries, one can prove that, if a(n)>3 or 0, then n>23 takes the form of either 1...1 or 101...1 in base 2 and simultaneously 212...2 in base 3. However, it is easy to see that this leads to a contradiction. Thus there are no terms greater than 3 and only 8 zeros, i.e., there are only 8 rows in Pascal's triangle that contain all squarefree numbers. It turns out that the latter result has been known for a long time (see A048278).
%H A249441 Charles R Greathouse IV, <a href="/A249441/b249441.txt">Table of n, a(n) for n = 0..10000</a>
%H A249441 E. E. Kummer, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0044&amp;IDDOC=266967">Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen</a>, J. Reine Angew. Math. 44 (1852), 93-146.
%H A249441 Mihai Prunescu, <a href="http://home.mathematik.uni-freiburg.de/prunescu/binomsym.pdf">Sign-reductions, p-adic valuations, binomial coefficients modulo p^k and triangular symmetries.</a> Preprint 2013.
%p A249441 a_list := proc(len) local s; s := proc(L,p) local n; seq(max(op(map(b-> padic[ordp](b,p),{seq(binomial(n,k),k=0..n)}))),n=0..L); map(k-> `if`(k<2,0,p),[%]) end: zip((x,y)-> `if`(x=0,y,x),s(len,2),s(len,3)) end: a_list(86); # _Peter Luschny_, Nov 01 2014
%p A249441 # alternative
%p A249441 A249441 := proc(n)
%p A249441     local p,wrks,bi,k;
%p A249441     if n in [0,1,2,3,5,7,11,23] then
%p A249441         return 0 ;
%p A249441     end if;
%p A249441     p :=2 ;
%p A249441     while true do
%p A249441         wrks := false;
%p A249441         bi := 1 ;
%p A249441         for k from 0 to n do
%p A249441             if modp(bi,p^2) = 0 then
%p A249441                 wrks := true;
%p A249441                 break;
%p A249441             end if;
%p A249441             bi := bi*(n-k)/(1+k) ;
%p A249441         end do:
%p A249441         if wrks then
%p A249441             return p;
%p A249441         end if;
%p A249441         p := nextprime(p) ;
%p A249441     end do:
%p A249441 end proc: # _R. J. Mathar_, Nov 04 2014
%t A249441 row[n_] := Table[Binomial[n, k], {k, 1, (n-Mod[n, 2])/2}];
%t A249441 a[n_] := If[MemberQ[{0, 1, 2, 3, 5, 7, 11, 23}, n], 0, For[p = 2, True, p = NextPrime[p], If[AnyTrue[row[n], Divisible[#, p^2]&], Return[p]]]];
%t A249441 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jul 30 2018 *)
%o A249441 (PARI) a(n) = my(o=0); for(k=1,n\2, o+=valuation((n-k+1)/k, 2); if(o>1, return(2))); if(n<24 && n!=15, 0, 3) \\ _Charles R Greathouse IV_, Nov 03 2014
%o A249441 (PARI) A249441(n) = { forprime(p=2,3,for(k=0,n\2,if((0==(binomial(n,k)%(p*p))),return(p)))); return(0); } \\ This is more straightforward, but a slower implementation - _Antti Karttunen_, Nov 03 2014
%o A249441 (PARI) a(n)=if((n+1)>>valuation(n+1,2)<5, if(n<24 && setsearch([1,2,3,5,7,11,23],n), 0, 3), 2) \\ _Charles R Greathouse IV_, Nov 06 2014
%Y A249441 Cf. A005117, A007913, A048278, A052955, A249695, A249714, A249715, A249723.
%K A249441 nonn,easy
%O A249441 0,5
%A A249441 _Vladimir Shevelev_, Oct 28 2014
%E A249441 More terms from _Peter J. C. Moses_, Oct 28 2014