This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249446 #22 Sep 08 2022 08:46:10 %S A249446 2,4,10,11,34,41,46,49,56,59,76,85,95,125,160,181,185,196,200,206,220, %T A249446 245,266,280,295,301,304,346,365,379,386,391,440,470,505,556,571,595, %U A249446 659,679,689,731,784,815,820,854,869,896,944,959,994,1001,1004,1015,1025,1154,1250,1345,1376 %N A249446 Numbers n such that 2*(n^2-1) - 1 and 2*(n^2-1) + 1 are primes. %C A249446 Subsequence of A066049. - _Michel Marcus_, Oct 29 2014 %C A249446 n such that 2*n^2 - 2 is in A014574. - _Robert Israel_, Nov 18 2014 %H A249446 Colin Barker, <a href="/A249446/b249446.txt">Table of n, a(n) for n = 1..1600</a> %e A249446 2 is in this sequence because 2*(2^2-1) - 1 = 5 and 2*(2^2-1) + 1 = 7 are both prime. %p A249446 select(n -> isprime(2*n^2-3) and isprime(2*n^2-1), [$1 .. 10000]); # _Robert Israel_, Nov 18 2014 %t A249446 Select[Range[0, 1500], PrimeQ[2 #^2 - 3] && PrimeQ[2 #^2 - 1] &] (* _Vincenzo Librandi_, Oct 29 2014 *) %o A249446 (Magma) [ n: n in [1..1400] | IsPrime(2*(n^2-1)-1) and IsPrime(2*(n^2-1)+1) ]; %o A249446 (PARI) isok(n) = isprime(2*(n^2-1) - 1) && isprime(2*(n^2-1) + 1); \\ _Michel Marcus_, Oct 31 2014 %Y A249446 Cf. A001097, A014574, A066049, A066436, A201712. %K A249446 nonn %O A249446 1,1 %A A249446 _Juri-Stepan Gerasimov_, Oct 29 2014