This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249447 #18 Oct 30 2014 11:51:53 %S A249447 2,11,101,1013,10037,100019,1000033,10000019,100000037,1000000033, %T A249447 10000000019,100000000019,1000000000039,10000000000037, %U A249447 100000000000031,1000000000000037,10000000000000079,100000000000000013,1000000000000000031,10000000000000000051,100000000000000000039 %N A249447 Least n-digit prime whose digit sum is also prime. %C A249447 Subsequence of A046704 (primes with digits sum being prime). %C A249447 Some terms of this sequence are also in A003617, the least n-digit primes. - _Michel Marcus_, Oct 30 2014 %H A249447 Paolo P. Lava, <a href="/A249447/b249447.txt">Table of n, a(n) for n = 1..100</a> %e A249447 a(1) = 2 because it is the least prime with just one digit. %e A249447 a(2) = 11 because it is the least prime with 2 digits whose sum, 1 + 1 = 2, is a prime. %e A249447 Again, a(7) = 1000033 because it is the least prime with 7 digits whose sum is a prime: 1 + 0 + 0 + 0 + 0 + 3 + 3 = 7. %p A249447 P:=proc(q) local a,b,k,n; for k from 0 to q do %p A249447 for n from 10^k to 10^(k+1)-1 do if isprime(n) then a:=n; b:=0; %p A249447 while a>0 do b:=b+(a mod 10); a:=trunc(a/10); od; %p A249447 if isprime(b) then print(n); break; fi; fi; %p A249447 od; od; end: P(10^3); %o A249447 (PARI) a(n) = {p = nextprime(10^(n-1)); while (!isprime(sumdigits(p)), p = nextprime(p+1)); p;} \\ _Michel Marcus_, Oct 29 2014 %Y A249447 Cf. A003617, A046704, A068166, A249448. %K A249447 nonn,base %O A249447 1,1 %A A249447 _Paolo P. Lava_, Oct 29 2014