cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249455 Decimal expansion of 2/sqrt(e), a constant appearing in the expression of the asymptotic expected volume V(d) of the convex hull of randomly selected n(d) vertices (with replacement) of a d-dimensional unit cube.

Original entry on oeis.org

1, 2, 1, 3, 0, 6, 1, 3, 1, 9, 4, 2, 5, 2, 6, 6, 8, 4, 7, 2, 0, 7, 5, 9, 9, 0, 6, 9, 9, 8, 2, 3, 6, 0, 9, 0, 6, 8, 8, 3, 8, 3, 6, 2, 7, 0, 9, 7, 4, 3, 7, 3, 9, 1, 1, 3, 6, 5, 7, 8, 4, 3, 1, 7, 4, 7, 0, 1, 1, 3, 0, 3, 8, 8, 2, 7, 4, 9, 6, 8, 4, 7, 9, 9, 7, 2, 9, 5, 2, 2, 3, 0, 1, 5, 9, 7, 8, 9, 1, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 29 2014

Keywords

Examples

			1.21306131942526684720759906998236090688383627...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 634.

Crossrefs

Programs

Formula

Lim_{d -> infinity} V(d) =
0 if n(d) <= (2/sqrt(e) - epsilon)^d
1 if n(d) >= (2/sqrt(e) + epsilon)^d.
Equals Product_{m>=1} A(2*m)^((-1)^(m+1)*Pi^(2*m)/(2*m)!), where A(k) is the k-th generalized Glaisher-Kinkelin (or Bendersky-Adamchik) constant (A074962, A243262, A243263, ...) (Perkins and Van Gorder, 2019). - Amiram Eldar, Feb 08 2024