A249456 Decimal expansion of a constant appearing in the expression of the asymptotic expected volume V(d) of the convex hull of uniformly selected n(d) points in the interior of a d-dimensional unit cube.
2, 1, 3, 9, 6, 9, 0, 9, 4, 7, 4, 1, 2, 8, 5, 9, 8, 6, 0, 5, 0, 5, 3, 0, 2, 2, 6, 3, 8, 5, 2, 3, 5, 2, 4, 4, 4, 3, 2, 3, 1, 4, 6, 9, 5, 6, 0, 5, 5, 1, 2, 9, 3, 8, 5, 8, 2, 4, 9, 8, 0, 0, 0, 7, 6, 0, 1, 1, 1, 5, 5, 2, 1, 8, 3, 2, 5, 1, 3, 3, 3, 2, 3, 8, 9, 6, 9, 7, 2, 7, 1, 2, 4, 4, 0, 0, 5, 2, 3, 8, 4, 3, 2
Offset: 1
Examples
2.139690947412859860505302263852352444323146956...
Links
- Steven R. Finch, Convex Lattice Polygons, December 18, 2003. [Cached copy, with permission of the author]
Crossrefs
Cf. A249455.
Programs
-
Mathematica
k = Exp[Log[2*Pi] - EulerGamma - 1/2]; RealDigits[k, 10, 103] // First
Formula
k = exp(log(2*Pi) - gamma - 1/2).
Lim_{d -> infinity} V(d) =
0 if n(d) <= (k - epsilon)^d
1 if n(d) >= (k + epsilon)^d