A249466 T(n,k)=Number of length n+4 0..k arrays with no five consecutive terms having four times any element equal to the sum of the remaining four.
30, 190, 58, 860, 464, 112, 2640, 2948, 1140, 216, 6730, 11260, 10124, 2802, 416, 14730, 35322, 48180, 34832, 6872, 802, 29060, 91160, 185982, 206428, 119932, 16800, 1546, 52900, 207760, 565516, 980718, 884728, 412972, 41084, 2980, 90390, 429364
Offset: 1
Examples
Some solutions for n=3 k=4 ..0....2....0....1....2....3....2....3....3....3....4....3....4....4....2....3 ..0....0....1....0....0....0....4....0....0....4....3....4....3....2....4....2 ..2....0....2....2....1....4....3....0....0....4....4....0....2....0....1....2 ..3....0....3....0....1....0....2....4....3....3....1....3....3....0....4....0 ..3....2....0....3....2....3....0....0....4....4....2....4....0....2....1....1 ..3....2....0....1....0....4....0....3....2....3....4....2....0....2....3....2 ..3....4....0....2....3....1....4....2....3....3....0....4....2....4....2....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2019
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4)
k=2: [order 37]
Empirical for row n:
n=1: [linear recurrence of order 11; also a polynomial of degree 5 plus a constant quasipolynomial with period 12]
Comments