cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249467 Number of length 1+4 0..n arrays with no five consecutive terms having four times any element equal to the sum of the remaining four.

Original entry on oeis.org

30, 190, 860, 2640, 6730, 14730, 29060, 52900, 90390, 146610, 228000, 342120, 498030, 706270, 979100, 1330440, 1776250, 2334330, 3024740, 3869740, 4893990, 6124530, 7591200, 9326400, 11365470, 13746670, 16511420, 19704240, 23373130
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2014

Keywords

Examples

			Some solutions for n=6:
  2  4  0  0  6  6  0  6  4  0  1  4  2  4  2  5
  3  3  2  6  5  0  1  3  6  0  3  6  1  3  4  1
  4  6  0  6  4  0  5  6  0  6  4  0  5  3  6  2
  3  0  3  1  2  4  5  0  0  0  4  5  6  1  0  5
  5  0  2  2  0  6  6  5  3  1  5  6  5  2  2  1
		

Crossrefs

Row 1 of A249466.

Formula

Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 4*a(n-4) + 2*a(n-5) + 2*a(n-6) - 4*a(n-7) + 5*a(n-8) - 6*a(n-9) + 4*a(n-10) - a(n-11).
Also a polynomial of degree 5 plus a constant pseudonomial with period 12:
Empirical for n mod 12 = 0: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n
Empirical for n mod 12 = 1: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n + (65/12)
Empirical for n mod 12 = 2: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n - (20/3)
Empirical for n mod 12 = 3: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n + (35/4)
Empirical for n mod 12 = 4: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n - (40/3)
Empirical for n mod 12 = 5: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n + (145/12)
Empirical for n mod 12 = 6: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n
Empirical for n mod 12 = 7: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n - (55/12)
Empirical for n mod 12 = 8: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n - (20/3)
Empirical for n mod 12 = 9: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n + (75/4)
Empirical for n mod 12 = 10: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n - (40/3)
Empirical for n mod 12 = 11: a(n) = n^5 + (15/4)*n^4 + (25/3)*n^3 + (15/2)*n^2 + 4*n + (25/12).
Empirical g.f.: 10*x*(3 + 7*x + 28*x^2 + 19*x^3 + 50*x^4 + 5*x^5 + 32*x^6 - 3*x^7 + 3*x^8) / ((1 - x)^6*(1 + x)*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Nov 09 2018