This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249474 #15 Oct 29 2014 22:14:45 %S A249474 1,1,2,7,30,169,1128,8700,76494,753139,8182188,97131376,1256860330, %T A249474 17470791933,261284377168,4164406202270,70677340199670, %U A249474 1268718107324255,24091289738163140,480954355282406340,10097484764045220626,221918808641500960217,5103937368681669463800 %N A249474 E.g.f.: P(x)/exp(1) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k). %C A249474 The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order. %H A249474 Paul D. Hanna, <a href="/A249474/b249474.txt">Table of n, a(n) for n = 0..200</a> %e A249474 E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 30*x^4/4! + 169*x^5/5! +... %e A249474 such that A(x) = exp(-1)*P(x) + Q(x), where %e A249474 P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and %e A249474 Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k). %e A249474 More explicitly, %e A249474 P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...); %e A249474 Q(x) = 1/(1-x) - 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) - 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +-... %e A249474 We can illustrate the initial terms a(n) in the following manner. %e A249474 The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin: %e A249474 q(0) = 0.632120558828557678... %e A249474 q(1) = 0.632120558828557678... %e A249474 q(2) = 0.896361676485673035... %e A249474 q(3) = 2.953326147114134462... %e A249474 q(4) = 9.398751294399229990... %e A249474 q(5) = 49.80706106045268780... %e A249474 q(6) = 273.0481787175680446... %e A249474 q(7) = 1956.034084445119360... %e A249474 q(8) = 14858.00690837186767... %e A249474 q(9) = 137211.6953065362928... %e A249474 and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin: %e A249474 A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...]; %e A249474 from which we can generate this sequence like so: %e A249474 a(0) = exp(-1)*1 + q(0) = 1; %e A249474 a(1) = exp(-1)*1 + q(1) = 1; %e A249474 a(2) = exp(-1)*3 + q(2) = 2; %e A249474 a(3) = exp(-1)*11 + q(3) = 7; %e A249474 a(4) = exp(-1)*56 + q(4) = 30; %e A249474 a(5) = exp(-1)*324 + q(5) = 169; %e A249474 a(6) = exp(-1)*2324 + q(6) = 1128; %e A249474 a(7) = exp(-1)*18332 + q(7) = 8700; %e A249474 a(8) = exp(-1)*167544 + q(8) = 76494; ... %o A249474 (PARI) \p100 \\ set precision %o A249474 {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841 %o A249474 {Q=Vec(serlaplace(sum(n=1, 201, -(-1)^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); } %o A249474 for(n=0, 30, print1(round(exp(-1)*P[n+1]+Q[n+1]), ", ")) %Y A249474 Cf. A007841, A249078, A249475, A249476, A249477, A249478, A249480. %K A249474 nonn %O A249474 0,3 %A A249474 _Paul D. Hanna_, Oct 29 2014