This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249476 #5 Oct 29 2014 22:36:28 %S A249476 1,1,6,35,242,1773,15056,136652,1393722,15257919,183206388,2347929936, %T A249476 32602306542,479885400177,7563888117504,125952344438838, %U A249476 2225653414414386,41351620513521627,810520833521436732,16633643598838880244,358221783030360367014,8051927483267030640573 %N A249476 E.g.f.: exp(3)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 3^n/Product_{k=1..n} (k - x^k). %C A249476 The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order. %e A249476 E.g.f.: A(x) = 1 + x + 6*x^2/2! + 35*x^3/3! + 242*x^4/4! + 1773*x^5/5! +... %e A249476 such that A(x) = exp(3)*P(x) - Q(x), where %e A249476 P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and %e A249476 Q(x) = Sum_{n>=1} 3^n / Product_{k=1..n} (k - x^k). %e A249476 More explicitly, %e A249476 P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...); %e A249476 Q(x) = 3/(1-x) + 3^2/((1-x)*(2-x^2)) + 3^3/((1-x)*(2-x^2)*(3-x^3)) + 3^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 3^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +... %e A249476 We can illustrate the initial terms a(n) in the following manner. %e A249476 The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin: %e A249476 q(0) = 19.085536923187667740... %e A249476 q(1) = 19.085536923187667740... %e A249476 q(2) = 54.256610769563003222... %e A249476 q(3) = 185.94090615506434515... %e A249476 q(4) = 882.79006769850939349... %e A249476 q(5) = 4734.7139631128043480... %e A249476 q(6) = 31622.787809488139829... %e A249476 q(7) = 231556.06287587632502... %e A249476 q(8) = 1971489.1982585546039... %e A249476 q(9) = 18370572.391163877342... %e A249476 and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin: %e A249476 A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...]; %e A249476 from which we can generate this sequence like so: %e A249476 a(0) = exp(3)*1 - q(0) = 1; %e A249476 a(1) = exp(3)*1 - q(1) = 1; %e A249476 a(2) = exp(3)*3 - q(2) = 6; %e A249476 a(3) = exp(3)*11 - q(3) = 35; %e A249476 a(4) = exp(3)*56 - q(4) = 242; %e A249476 a(5) = exp(3)*324 - q(5) = 1773; %e A249476 a(6) = exp(3)*2324 - q(6) = 15056; %e A249476 a(7) = exp(3)*18332 - q(7) = 136652; %e A249476 a(8) = exp(3)*167544 - q(8) = 1393722; ... %o A249476 (PARI) \p100 \\ set precision %o A249476 {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841 %o A249476 {Q=Vec(serlaplace(sum(n=1, 201, 3^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); } %o A249476 for(n=0, 30, print1(round(exp(3)*P[n+1]-Q[n+1]), ", ")) %Y A249476 Cf. A007841, A249078, A249474, A249475, A249477, A249478, A249480. %K A249476 nonn %O A249476 0,3 %A A249476 _Paul D. Hanna_, Oct 29 2014