This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249478 #7 Oct 29 2014 22:02:25 %S A249478 1,1,1,5,12,88,496,4032,32072,335144,3443928,41477176,523289472, %T A249478 7298441952,107525078304,1714360202528,28771306555776,515446334184832, %U A249478 9722819034952832,193501572577378944,4042243606465206784,88584621284011603968,2029364250844776170496,48539531534286294782976 %N A249478 E.g.f.: P(x)/exp(2) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} -(-2)^n/Product_{k=1..n} (k - x^k). %C A249478 The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order. %H A249478 Paul D. Hanna, <a href="/A249478/b249478.txt">Table of n, a(n) for n = 0..200</a> %e A249478 E.g.f.: A(x) = 1 + x + x^2/2! + 5*x^3/3! + 12*x^4/4! + 88*x^5/5! +... %e A249478 such that A(x) = exp(-2)*P(x) + Q(x), where %e A249478 P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and %e A249478 Q(x) = Sum_{n>=1} -(-2)^n / Product_{k=1..n} (k - x^k). %e A249478 More explicitly, %e A249478 P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...); %e A249478 Q(x) = 2/(1-x) - 2^2/((1-x)*(2-x^2)) + 2^3/((1-x)*(2-x^2)*(3-x^3)) - 2^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 2^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +... %e A249478 We can illustrate the initial terms a(n) in the following manner. %e A249478 The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin: %e A249478 q(0) = 0.864664716763387308106000... %e A249478 q(1) = 0.864664716763387308106000... %e A249478 q(2) = 0.593994150290161924318001... %e A249478 q(3) = 3.511311884397260389166005... %e A249478 q(4) = 4.421224138749689253936028... %e A249478 q(5) = 44.15136823133748782634416... %e A249478 q(6) = 181.4808017581121040383451... %e A249478 q(7) = 1551.033587706416132199201... %e A249478 q(8) = 9397.385305404963149311748... %e A249478 q(9) = 108557.0073471358880187848... %e A249478 and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin: %e A249478 A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...]; %e A249478 from which we can generate this sequence like so: %e A249478 a(0) = exp(-2)*1 + q(0) = 1; %e A249478 a(1) = exp(-2)*1 + q(1) = 1; %e A249478 a(2) = exp(-2)*3 + q(2) = 1; %e A249478 a(3) = exp(-2)*11 + q(3) = 5; %e A249478 a(4) = exp(-2)*56 + q(4) = 12; %e A249478 a(5) = exp(-2)*324 + q(5) = 88; %e A249478 a(6) = exp(-2)*2324 + q(6) = 496; %e A249478 a(7) = exp(-2)*18332 + q(7) = 4032; %e A249478 a(8) = exp(-2)*167544 + q(8) = 32072; ... %o A249478 (PARI) \p100 \\ set precision %o A249478 {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841 %o A249478 {Q=Vec(serlaplace(sum(n=1, 201, -(-2)^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); } %o A249478 for(n=0, 30, print1(round(exp(-2)*P[n+1]+Q[n+1]), ", ")) %Y A249478 Cf. A007841, A249078, A249474, A249475, A249476, A249477, A249480. %K A249478 nonn %O A249478 0,4 %A A249478 _Paul D. Hanna_, Oct 29 2014