This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249482 #22 Feb 16 2025 08:33:24 %S A249482 2,906150256,906150308,906150310,906151576,906154582,906154586, %T A249482 906154604,906154606,906154608,906154758,906154762,906154764, %U A249482 906154768,906154770,906154788,906154794,906154824,906154826,906154828,906154830,906154836,906154838,906154856 %N A249482 Numbers n such that the summatory Liouville function L(n) (A002819) is zero and L(n-1)*L(n+1) = -1. %C A249482 To create the data, the author studied the b-file of _Donovan Johnson_ in A189229. %C A249482 For k>=1, %C A249482 in the interval [a(2k-1), a(2k)], L(n)<=0, %C A249482 in the interval [a(2k), a(2k+1)], L(n)>=0. %C A249482 In particular, for k=1, in the interval [2, 906150256], L(n)<=0. %C A249482 G. Polya (1919) conjectured that L(n)<=0, for n>=2. But this was disproved in 1958 by B. Haselgrove, and in 1980 M. Tanaka found the smallest counterexample, a(2)+1 = 906150257. %H A249482 P. Borwein, R. Ferguson, and M. Mossinghoff, <a href="http://dx.doi.org/10.1090/S0025-5718-08-02036-X">Sign changes in sums of the Liouville function</a>, Mathematics of Computation 77 (2008), pp. 1681-1694. %H A249482 M. Tanaka, <a href="http://dx.doi.org/10.3836/tjm/1270216093">A Numerical Investigation on Cumulative Sum of the Liouville Function</a>, Tokyo J. Math. 3, 187-189, 1980. %H A249482 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LiouvilleFunction.html">Liouville Function</a> %H A249482 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolyaConjecture.html">Polya Conjecture</a> %Y A249482 Cf. A002819, A028488, A051470, A189229, A249487, A253174. %K A249482 nonn %O A249482 1,1 %A A249482 _Vladimir Shevelev_, Jan 13 2015