This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249490 #27 Nov 10 2014 06:50:28 %S A249490 2,3,12,28,63,113,208,296,473,657,946,1236,1661,2071,2688,3228,4059, %T A249490 4811,5898,6858,8209,9433,11116,12572,14637,16395,18872,21046,23935, %U A249490 26405,29836,32742,36695,40007,44480,48254,53405,57681,63488,68284,74791,80149,87374 %N A249490 a(n) = Sum_{m=0..floor((n-1)/2)} prime((n-m)(n-m-1)/2+m+1). %C A249490 Arrange the prime numbers into a triangle, with 2 at the top, 3 and 5 in the second row, 7, 11 and 13 in the third row, and so on: %C A249490 2 %C A249490 3 5 %C A249490 7 11 13 %C A249490 17 19 23 29 %C A249490 31 37 41 43 47 %C A249490 ... %C A249490 The n-th term in the sequence is then the sum of the numbers in the upward diagonal beginning on the n-th row of this triangle. %H A249490 George Stagg, <a href="/A249490/b249490.txt">Table of n, a(n) for n = 1..1000</a> %F A249490 a(n) = Sum_{m=0..floor((n-1)/2)} prime((n-m)(n-m-1)/2+m+1). %e A249490 a(1) = 2; a(2) = 3; a(3) = 7+5 = 12; a(4) = 17+11 = 28. %p A249490 A249490:=n->add(ithprime((n-m)*(n-m-1)/2+m+1), m=0..floor((n-1)/2)): seq(A249490(n), n=1..50); # _Wesley Ivan Hurt_, Nov 07 2014 %t A249490 Table[Sum[Prime[(n - m) (n - m - 1)/2 + m + 1], {m, 0, Floor[(n - 1)/2]}], {n, 50}] (* _Wesley Ivan Hurt_, Nov 07 2014 *) %o A249490 (MATLAB/Octave) %o A249490 p=primes(10000);a=[]; %o A249490 for n=1:30 %o A249490 m=0:floor((n-1)/2); %o A249490 a=[a,sum(p((n-m).*(n-m-1)./2 + m + 1))]; %o A249490 end %o A249490 a %o A249490 (PARI) a(n) = sum(m=0,(n-1)\2, prime((n-m)*(n-m-1)/2+m+1)); \\ _Michel Marcus_, Nov 04 2014 %Y A249490 Cf. A007468, A079824. %K A249490 nonn,easy %O A249490 1,1 %A A249490 _George Stagg_, Oct 30 2014