This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249530 #8 Jul 23 2025 12:04:00 %S A249530 62,606,122,3492,1572,240,13580,12156,4120,472,40950,59720,42400, %T A249530 10834,928,104562,217170,263156,147984,28500,1824,235196,655352, %U A249530 1154444,1161050,516652,74886,3586,480912,1699092,4116620,6143828,5126096 %N A249530 T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having five times any element equal to the sum of the remaining five. %C A249530 Table starts %C A249530 ....62.....606......3492......13580........40950........104562.........235196 %C A249530 ...122....1572.....12156......59720.......217170........655352........1699092 %C A249530 ...240....4120.....42400.....263156......1154444.......4116620.......12297972 %C A249530 ...472...10834....147984....1161050......6143828......25889916.......89105036 %C A249530 ...928...28500....516652....5126096.....32715172.....162930700......645979544 %C A249530 ..1824...74886...1804128...22639594....174242716....1025679026.....4684420552 %C A249530 ..3586..196346...6301554...99998070....928056514....6457498056....33973205930 %C A249530 ..7050..515066..22009836..441725882...4943294814...40657829724...246394508200 %C A249530 .13860.1352304..76884550.1951405680..26331473568..255999677748..1787038582186 %C A249530 .27248.3552428.268579888.8621117794.140263427946.1611927429578.12961135262872 %H A249530 R. H. Hardin, <a href="/A249530/b249530.txt">Table of n, a(n) for n = 1..468</a> %F A249530 Empirical for column k: %F A249530 k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) %F A249530 k=2: [order 92] %F A249530 Empirical for row n: %F A249530 n=1: [linear recurrence of order 16; also a polynomial of degree 6 plus a quasipolynomial of degree 0 with period 60] %e A249530 Some solutions for n=3 k=4 %e A249530 ..1....1....0....1....0....1....1....0....1....0....0....1....0....0....1....1 %e A249530 ..0....1....0....3....3....4....4....4....0....0....0....3....2....4....2....2 %e A249530 ..1....4....0....3....0....0....1....0....3....3....1....0....0....4....3....0 %e A249530 ..2....4....1....1....2....2....1....0....4....1....0....1....4....1....0....3 %e A249530 ..2....0....3....1....0....1....0....0....2....1....1....1....1....4....2....4 %e A249530 ..4....0....0....3....4....0....3....2....4....4....1....1....0....0....1....3 %e A249530 ..2....1....1....2....0....2....3....2....2....3....1....1....1....1....1....3 %e A249530 ..0....3....4....1....0....2....0....2....4....0....4....1....1....1....4....0 %Y A249530 Column 1 is A135493(n+5) %K A249530 nonn,tabl %O A249530 1,1 %A A249530 _R. H. Hardin_, Oct 31 2014