cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A249524 Number of length n+5 0..2 arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

606, 1572, 4120, 10834, 28500, 74886, 196346, 515066, 1352304, 3552428, 9333678, 24522392, 64420184, 169229954, 444582618, 1168011448, 3068677974, 8062255694, 21181628238, 55649517844, 146205759750, 384121780036, 1009193088634
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Column 2 of A249530

Examples

			Some solutions for n=6
..0....2....2....2....2....0....1....0....2....0....1....2....1....2....1....0
..2....0....1....1....2....2....1....0....0....1....2....1....0....0....0....1
..0....0....0....1....1....0....0....2....1....1....1....1....0....1....0....2
..2....2....2....2....0....1....2....0....2....1....0....1....2....2....1....0
..0....0....1....1....0....1....1....2....0....0....0....0....2....1....2....1
..1....2....2....2....0....0....0....2....0....0....0....0....0....1....1....1
..0....2....1....1....1....0....0....0....2....1....2....1....0....0....1....0
..2....2....2....1....1....1....2....0....2....0....0....0....2....0....2....0
..2....1....1....2....2....0....0....2....2....1....0....2....0....0....2....2
..2....1....0....0....0....2....2....1....2....0....2....2....2....2....2....0
..2....1....1....2....1....0....1....2....0....2....1....2....0....2....2....0
		

Formula

Empirical recurrence of order 92 (see link above)

A249525 Number of length n+5 0..3 arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

3492, 12156, 42400, 147984, 516652, 1804128, 6301554, 22009836, 76884550, 268579888, 938237580, 3277608092, 11449981646, 39999390704, 139734492670, 488151637034, 1705321234646, 5957415743556, 20811807878768, 72704583358670
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Column 3 of A249530

Examples

			Some solutions for n=4
..0....1....1....2....0....0....0....1....2....0....2....0....0....0....2....0
..2....2....0....2....2....2....1....0....2....2....2....2....0....3....1....0
..3....1....1....1....3....0....1....0....1....0....2....2....1....1....3....2
..0....0....2....0....1....3....1....0....2....0....0....1....0....3....2....0
..3....0....3....2....2....2....2....3....2....1....3....2....1....1....3....2
..2....3....1....1....2....0....2....1....2....1....2....3....0....0....3....3
..3....2....3....2....3....0....3....1....2....3....2....1....2....2....1....3
..0....2....3....1....2....3....2....3....0....0....2....0....3....3....2....1
..2....3....1....3....1....0....1....3....0....2....1....2....2....2....3....0
		

A249526 Number of length n+5 0..4 arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

13580, 59720, 263156, 1161050, 5126096, 22639594, 99998070, 441725882, 1951405680, 8621117794, 38088447024, 168279117534, 743481021992, 3284821244114, 14512935374230, 64120940154432, 283299106253030
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Column 4 of A249530

Examples

			Some solutions for n=2
..4....2....1....0....1....3....4....3....4....2....1....4....1....3....4....3
..3....1....0....4....4....4....1....3....0....0....2....1....1....1....2....4
..4....4....1....4....2....4....0....1....2....0....2....0....1....0....1....2
..1....2....3....4....4....0....0....1....3....2....2....3....3....3....3....2
..1....0....2....1....4....1....2....2....0....3....1....3....3....4....4....2
..2....1....2....2....2....2....3....0....1....4....3....1....2....4....2....2
..3....0....0....0....3....3....1....1....1....2....0....1....4....0....3....2
		

A249527 Number of length n+5 0..5 arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

40950, 217170, 1154444, 6143828, 32715172, 174242716, 928056514, 4943294814, 26331473568, 140263427946, 747171260210, 3980145902456, 21202085312938, 112942889155700, 601644129222708, 3204946465088122, 17072694273640276
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Column 5 of A249530

Examples

			Some solutions for n=1
..5....1....4....5....3....2....0....0....4....5....0....0....0....5....2....2
..2....5....2....4....1....4....2....2....0....0....1....1....5....3....1....3
..2....5....5....3....1....5....4....2....2....2....1....3....4....0....5....4
..0....0....1....0....1....5....5....5....4....2....4....3....4....1....2....5
..3....3....1....5....1....1....5....3....2....2....0....1....1....3....0....5
..4....2....4....2....3....5....2....1....5....4....3....3....3....3....1....3
		

A249528 Number of length n+5 0..6 arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

104562, 655352, 4116620, 25889916, 162930700, 1025679026, 6457498056, 40657829724, 255999677748, 1611927429578, 10149823794508, 63910965532560, 402433154974626, 2534037036460586, 15956315864643664, 100473747281327598
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Column 6 of A249530

Examples

			Some solutions for n=1
..2....1....4....1....3....1....2....3....3....5....6....3....4....5....5....3
..0....2....5....4....0....2....1....0....0....1....3....1....1....5....2....3
..3....4....4....3....0....2....1....4....0....1....0....5....1....0....0....5
..0....6....1....1....0....4....3....5....0....2....1....5....4....3....3....3
..1....4....0....0....3....5....2....2....3....6....5....1....2....2....6....6
..3....3....6....0....5....0....4....2....0....5....0....2....2....6....6....2
		

A249529 Number of length n+5 0..7 arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

235196, 1699092, 12297972, 89105036, 645979544, 4684420552, 33973205930, 246394508200, 1787038582186, 12961135262872, 94006175274074, 681823782781788, 4945255917923416, 35867880222569408, 260149395845852954
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Column 7 of A249530.

Examples

			Some solutions for n=1:
..6....4....2....0....6....4....2....0....2....4....2....0....4....6....4....4
..4....5....6....0....2....2....5....1....0....0....0....2....7....5....6....3
..4....5....2....6....5....3....6....3....7....1....7....2....6....2....3....0
..1....6....2....5....2....7....3....1....0....5....6....0....6....3....5....2
..4....5....1....4....1....6....7....4....6....2....2....3....5....2....6....1
..1....4....5....5....5....0....3....7....7....3....1....1....7....4....5....5
		

Crossrefs

Cf. A249530.

A249531 Number of length 1+5 0..n arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

62, 606, 3492, 13580, 40950, 104562, 235196, 480912, 911490, 1625210, 2754672, 4474896, 7011302, 10648350, 15739200, 22716332, 32101806, 44520162, 60709580, 81535980, 108006522, 141284426, 182704032, 233787120, 296259530, 372068862
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Row 1 of A249530

Examples

			Some solutions for n=6
..5....0....2....3....3....4....5....1....4....5....0....0....2....3....4....0
..2....4....5....1....1....6....1....5....4....4....2....4....5....5....1....2
..0....5....1....0....2....3....1....3....6....2....1....4....4....3....6....3
..1....3....0....4....5....2....1....2....2....6....1....4....1....0....2....1
..0....3....2....0....2....4....3....5....1....6....6....0....3....0....4....5
..0....1....3....6....1....3....6....1....6....2....6....0....4....3....2....6
		

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +5*a(n-3) -4*a(n-4) +3*a(n-5) -2*a(n-6) +2*a(n-7) -2*a(n-9) +2*a(n-10) -3*a(n-11) +4*a(n-12) -5*a(n-13) +6*a(n-14) -4*a(n-15) +a(n-16)
Also a degree 6 polynomial plus a degree 0 quasipolynomial with period 60, the first 12 being:
Empirical for n mod 60 = 0: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n
Empirical for n mod 60 = 1: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (547/60)
Empirical for n mod 60 = 2: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (124/15)
Empirical for n mod 60 = 3: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (183/20)
Empirical for n mod 60 = 4: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (472/15)
Empirical for n mod 60 = 5: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (425/12)
Empirical for n mod 60 = 6: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (156/5)
Empirical for n mod 60 = 7: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (821/60)
Empirical for n mod 60 = 8: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (344/15)
Empirical for n mod 60 = 9: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (879/20)
Empirical for n mod 60 = 10: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (80/3)
Empirical for n mod 60 = 11: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (1547/60)

A249532 Number of length 2+5 0..n arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

122, 1572, 12156, 59720, 217170, 655352, 1699092, 3938716, 8348950, 16470560, 30608872, 54122412, 91697506, 149751320, 236861800, 364284732, 546512242, 802022236, 1153833900, 1630502000, 2266990462, 3105706852, 4197621376
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Row 2 of A249530

Examples

			Some solutions for n=4
..4....2....3....4....2....2....4....4....3....1....0....3....2....3....0....0
..4....0....2....2....2....4....3....1....4....3....1....0....0....3....3....0
..0....2....0....0....0....0....2....3....3....2....4....4....0....0....1....2
..4....3....4....4....0....4....4....2....1....4....1....3....2....0....0....0
..2....0....3....2....2....2....1....3....0....2....4....0....3....4....1....1
..2....1....4....1....3....2....2....3....3....1....1....1....2....1....0....2
..2....1....2....1....2....2....2....3....0....4....4....2....2....1....3....2
		

A249533 Number of length 3+5 0..n arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

240, 4120, 42400, 263156, 1154444, 4116620, 12297972, 32313804, 76590192, 167150680, 340541012, 655325864, 1200479148, 2107926892, 3567580824, 5846311812, 9310701480, 14457811924, 21942849820, 32624138612, 47607833428
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Row 3 of A249530

Examples

			Some solutions for n=3
..0....1....3....0....3....0....0....0....0....1....3....3....2....0....3....3
..1....0....0....3....0....3....1....0....3....2....1....0....1....0....1....1
..1....2....0....1....3....1....0....2....3....2....2....2....3....1....1....0
..1....0....0....0....1....0....3....2....0....2....2....0....2....1....0....0
..2....3....2....2....3....1....0....1....1....2....3....2....2....1....0....2
..0....1....3....1....1....2....1....2....3....1....2....1....3....0....0....1
..3....2....2....1....2....0....2....0....0....0....3....2....0....2....3....3
..3....2....0....3....3....0....3....0....2....2....2....0....0....0....1....2
		

A249534 Number of length 4+5 0..n arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.

Original entry on oeis.org

472, 10834, 147984, 1161050, 6143828, 25889916, 89105036, 265355962, 703196860, 1697573454, 3791220900, 7939541008, 15724825316, 29686208288, 53758774120, 93865133098, 158683717456, 260719421940, 417432211296, 652964625866
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2014

Keywords

Comments

Row 4 of A249530

Examples

			Some solutions for n=3
..1....2....0....0....0....2....2....0....2....1....0....1....0....1....2....2
..2....3....1....2....0....1....2....2....2....2....0....2....0....2....0....2
..0....0....0....1....0....3....1....2....1....0....1....1....1....3....3....3
..0....1....3....3....0....2....3....2....1....2....0....1....1....0....2....2
..0....2....3....0....1....2....2....0....1....0....1....3....1....1....2....2
..2....2....3....3....1....3....3....1....2....0....1....2....1....0....2....0
..2....3....0....0....3....0....2....1....2....0....1....1....3....2....1....1
..3....0....2....3....2....1....0....3....2....3....3....0....1....3....1....2
..3....2....3....2....1....3....1....1....0....3....2....1....1....1....3....3
		
Showing 1-10 of 13 results. Next