A249542 Decimal expansion of the average product of a side and an adjacent angle of a random Gaussian triangle in two dimensions.
1, 6, 3, 7, 7, 2, 9, 3, 2, 4, 8, 5, 6, 8, 6, 8, 0, 3, 2, 7, 8, 0, 1, 5, 6, 9, 5, 6, 7, 9, 8, 4, 7, 6, 4, 5, 5, 8, 2, 0, 3, 8, 1, 9, 8, 7, 0, 9, 0, 5, 9, 3, 4, 1, 7, 5, 4, 8, 7, 6, 5, 2, 2, 4, 7, 7, 1, 2, 0, 5, 6, 8, 9, 3, 3, 1, 1, 1, 6, 4, 9, 0, 2, 1, 5, 0, 7, 1, 1, 3, 4, 8, 3, 2, 2, 0, 7, 1, 2, 4, 6, 9, 9, 2, 8
Offset: 1
Examples
1.6377293248568680327801569567984764558203819870905934...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Steven R. Finch, Random Triangles, January 21, 2010, p. 14. [Cached copy, with permission of the author]
- Eric Weisstein's MathWorld, Gaussian Triangle Picking
Programs
-
Mathematica
ex = (-Sqrt[3]*Log[3] + Pi^2 - 8*PolyLog[2, 2-Sqrt[3]] + 2*PolyLog[2, 7-4*Sqrt[3]])/(2*Sqrt[Pi]); RealDigits[ex, 10, 105] // First
-
Python
from mpmath import * mp.dps=106 C = (-sqrt(3)*log(3) + pi**2 - 8*polylog(2, 2-sqrt(3)) + 2*polylog(2, 7 - 4*sqrt(3)))/(2*sqrt(pi)) print([int(n) for n in list(str(C).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 04 2017
Formula
Equals (1/(3*Pi))*Integral_{x=0..oo} Integral_{y=0..oo} Integral_{t=0..Pi} x^2*y*t*exp(-(1/3)*(x^2 - x*y*cos(t) + y^2)) dt dy dx.
Equals (-sqrt(3)*log(3) + Pi^2 - 8*Li_2(2-sqrt(3)) + 2*Li_2(7-4*sqrt(3)))/(2*sqrt(Pi)), where Li_2 is the dilogarithm function.
Comments