This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249559 #16 Sep 10 2024 18:42:35 %S A249559 3,2,5,7,4,9,11,13,17,19,8,23,15,29,31,37,41,43,47,49,53,59,16,61,67, %T A249559 71,25,27,73,79,83,89,97,101,103,107,109,113,121,127,91,131,137,139, %U A249559 149,151,32,157,163,167,173,179,181,191,85,193,57,197,199,211,223,227,229,233,239,241,251,257,263 %N A249559 Same definition as A247665, except first term is 3. %o A249559 (SageMath) # from _Nadia Heninger_, Oct 28 2014: s is the starting point (2 in A247665, 3 here). %o A249559 def gen(s): %o A249559 sequence = [s] %o A249559 available = range(2, 2*s) %o A249559 available.pop(available.index(s)) %o A249559 yield s %o A249559 while True: %o A249559 available.extend(range(available[-1]+1, next_prime(available[-1])+1)) %o A249559 for i, e in enumerate(available): %o A249559 if all([gcd(e, sequence[j])==1 for j in range(-len(sequence)/2, 0)]): %o A249559 available.pop(i) %o A249559 sequence.append(e) %o A249559 yield(e) %o A249559 break %o A249559 g = gen(3) %o A249559 [g.next() for i in range(40)] # gets first 40 terms %o A249559 (Python) %o A249559 from itertools import count, islice %o A249559 from math import gcd %o A249559 from collections import deque %o A249559 def A249559_gen(): # generator of terms %o A249559 aset, aqueue, c, f = {3}, deque([3]), 2, True %o A249559 yield 3 %o A249559 while True: %o A249559 for m in count(c): %o A249559 if m not in aset and all(gcd(m,a) == 1 for a in aqueue): %o A249559 yield m %o A249559 aset.add(m) %o A249559 aqueue.append(m) %o A249559 if f: aqueue.popleft() %o A249559 f = not f %o A249559 while c in aset: %o A249559 c += 1 %o A249559 break %o A249559 A249559_list = list(islice(A249559_gen(),50)) # _Chai Wah Wu_, May 19 2022 %Y A249559 Cf. A247665. %K A249559 nonn %O A249559 1,1 %A A249559 _N. J. A. Sloane_, Nov 02 2014