This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249576 #26 Nov 11 2024 22:23:53 %S A249576 0,1,0,1,1,2,2,3,4,5,7,10,12,17,24,29,41,58,70,99,140,169,239,338,408, %T A249576 577,816,985,1393,1970,2378,3363,4756,5741,8119,11482,13860,19601, %U A249576 27720,33461,47321,66922,80782,114243,161564,195025,275807,390050,470832,665857,941664 %N A249576 List of triples (r,s,t): the matrix M = [[1,4,4][1,3,2][1,2,1]] is raised to successive powers, then (r,s,t) are the square roots of M[3,1], M[1,1], M[1,3] respectively. %C A249576 Numbers to the left of a(0) are in A249577. %C A249576 Some identities: %C A249576 a(3n - 2) + a(3n - 1) = a(3n + 1). %C A249576 a(3n) + a(3n + 1) = a(3(n + 1)). %C A249576 a(3n - 2) + a(3n + 1) = a(3n + 2). %C A249576 a(3n) + a(3n - 1) + a(3(n - 2)) = a(3n + 1). %C A249576 a(3n - 1)a(3n) + a(3n + 2)a(3(n + 1)) = a(6n + 2). %H A249576 Colin Barker, <a href="/A249576/b249576.txt">Table of n, a(n) for n = 0..1000</a> %H A249576 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,1). %F A249576 a(n) = -2*a(n-3)+a(n-6); G.f.: -x*(2*x^4-x^3+x^2+1) / (x^6+2*x^3-1). - _Colin Barker_, Nov 02 2014 %e A249576 M^0 = the 3 X 3 identity matrix = [[1,0,0][0,1,0][0,0,1]]. M[3,1] = 0; M[1,1] = 1; M[1,3] = 0. So the first triple is r = a(0) = 0; s = a(1) = 1; t = a(2) = 0. %e A249576 M^1 = [[1,4,4][1,3,2][1,2,1]], so r = a(3) = 1; s = a(4) = 1; t = a(5) = 2. %t A249576 LinearRecurrence[{0,0,2,0,0,1},{0,1,0,1,1,2},60] (* _Harvey P. Dale_, Dec 29 2021 *) %o A249576 (PARI) concat(0, Vec(-x*(2*x^4-x^3+x^2+1)/(x^6+2*x^3-1) + O(x^100))) \\ _Colin Barker_, Nov 02 2014 %Y A249576 a(3n) = the n-th term of A000129, the Pell numbers. %Y A249576 a(3n+1) = n-th term of A001333. %Y A249576 a(3n+2) = n-th term of A163271. %K A249576 nonn,tabf,easy %O A249576 0,6 %A A249576 _Russell Walsmith_, Nov 01 2014