This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249620 #18 Oct 30 2021 07:17:54 %S A249620 1,1,2,2,5,4,3,15,11,7,9,5,52,36,21,26,12,16,7,203,135,74,92,38,52,19, %T A249620 66,29,31,11,877,566,296,371,141,198,64,249,98,109,30,137,47,57,15, %U A249620 4140,2610,1315,1663,592,850,250,1075,392,444,105,560 %N A249620 Triangle read by rows: T(m,n) = number of partitions of the multiset with m elements and signature corresponding to n-th integer partition (A194602). %C A249620 This triangle shows the same numbers in each row as A129306 and A096443, but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602. %C A249620 Row lengths: A000041 (partition numbers), Row sums: A035310 %C A249620 Columns: 0: A000110 (Bell), 1: A035098 (near-Bell), 2: A169587, 4: A169588 %C A249620 Last in row: end-1: A091437, end: A000041 (partition numbers) %C A249620 The rightmost columns form a reflected version of the triangle A126442: %C A249620 n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1) %C A249620 m %C A249620 1 1 %C A249620 2 2 2 %C A249620 3 5 4 3 %C A249620 4 15 11 7 5 %C A249620 5 52 36 21 12 7 %C A249620 6 203 135 74 38 19 11 %C A249620 7 877 566 296 141 64 30 15 %C A249620 8 4140 2610 1315 592 250 105 45 22 %C A249620 A249619 shows the number of permutations of the same multisets. %H A249620 Tilman Piesk, <a href="/A249620/b249620.txt">Triangle rows m=0..8, flattened.</a> %H A249620 Tilman Piesk, <a href="https://en.wikiversity.org/wiki/Partitions_of_multisets">Partitions of multisets</a> (Wikiversity) %H A249620 Tilman Piesk, <a href="http://pastebin.com/HuiVhmrP">The T(5,2)=21 partitions of {1,1,1,2,3}</a> %H A249620 Tilman Piesk, <a href="http://pastebin.com/jHr76sFa">PHP code used to calculate the examples</a> %e A249620 See "The T(5,2)=21 partitions of {1,1,1,2,3}" link. Similar links for m=1..8 are in "Partitions of multisets" (Wikiversity). %e A249620 Triangle begins: %e A249620 n 0 1 2 3 4 5 6 7 8 9 10 %e A249620 m %e A249620 0 1 %e A249620 1 1 %e A249620 2 2 2 %e A249620 3 5 4 3 %e A249620 4 15 11 7 9 5 %e A249620 5 52 36 21 26 12 16 7 %e A249620 6 203 135 74 92 38 52 19 66 29 31 11 %Y A249620 Cf. A129306, A096443, A035310, A194602, A249619, A000041, A126442 %K A249620 nonn,tabf %O A249620 0,3 %A A249620 _Tilman Piesk_, Nov 04 2014