This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249626 #11 Apr 11 2016 08:46:38 %S A249626 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28, %T A249626 29,30,34,35,36,37,38,39,40,45,46,47,48,49,50,56,57,58,59,60,67,68,69, %U A249626 70,78,79,80,89,90,100,21,31,41,51,61,71,81,91,22,32,42 %N A249626 a(0) = 0, a(n+1) = smallest number, not occurring earlier, containing the smallest of the least frequently occurring digits in all preceding terms. %C A249626 a(n) = A102823(n) for n <= 55; %C A249626 not all numbers occur: all repunits (A002275) greater than 1 are missing; idea of proof: for n > 1 the digit 1 will never again be the smallest of least frequently occurring digits; %C A249626 A249648 gives positions of terms containing a zero. %H A249626 Reinhard Zumkeller, <a href="/A249626/b249626.txt">Table of n, a(n) for n = 0..10000</a> %e A249626 n = 11: digits 0 and 1 occur twice in {a(k): k=0..10}, all other digits exactly once, where 2 is the smallest; therefore a(11) must contain digit 2, and 12 is the smallest unused number containing 2, hence a(11) = 12. %e A249626 n = 55: digits 0..9 occur exactly 10 times in {a(k): k=0..54}; therefore a(55) must contain digit 0, the smallest digit; a(55) = 100, as 100 is the smallest unused number containing 0; %e A249626 n = 56: least occurring digits in {a(k): k=0..10} are 2..9 and 2 is the smallest; therefore a(56) must contain digit 2, and 21 is the smallest unused number containing 2, hence a(56) = 21. %o A249626 (Haskell) %o A249626 import Data.List (delete, group, sortBy); import Data.Function (on) %o A249626 a249626 n = a249626_list !! n %o A249626 a249626_list = f (zip [0,0..] [0..9]) a031298_tabf where %o A249626 f acds@((_,dig):_) zss = g zss where %o A249626 g (ys:yss) = if dig `elem` ys %o A249626 then y : f acds' (delete ys zss) else g yss %o A249626 where y = foldr (\d v -> 10 * v + d) 0 ys %o A249626 acds' = sortBy (compare `on` fst) $ %o A249626 addd (sortBy (compare `on` snd) acds) %o A249626 (sortBy (compare `on` snd) $ %o A249626 zip (map length gss) (map head gss)) %o A249626 addd cds [] = cds %o A249626 addd [] _ = [] %o A249626 addd ((c, d) : cds) yys'@((cy, dy) : yys) %o A249626 | d == dy = (c + cy, d) : addd cds yys %o A249626 | otherwise = (c, d) : addd cds yys' %o A249626 gss = sortBy compare $ group ys %Y A249626 Cf. A031298, A002275, A011540, A249648, A102823. %K A249626 nonn,look,base %O A249626 0,3 %A A249626 _Reinhard Zumkeller_, Nov 03 2014