cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249632 Triangular array read by rows. T(n,k) is the number of labeled trees with black and white nodes having exactly k black nodes, n>=0, 0<=k<=n.

This page as a plain text file.
%I A249632 #12 Apr 26 2016 12:37:41
%S A249632 1,1,1,1,2,1,3,9,9,3,16,64,96,64,16,125,625,1250,1250,625,125,1296,
%T A249632 7776,19440,25920,19440,7776,1296,16807,117649,352947,588245,588245,
%U A249632 352947,117649,16807,262144,2097152,7340032,14680064,18350080,14680064,7340032,2097152,262144
%N A249632 Triangular array read by rows.  T(n,k) is the number of labeled trees with black and white nodes having exactly k black nodes, n>=0, 0<=k<=n.
%C A249632 Row sums = A038058.
%C A249632 T(n,n) = T(n,0) = n^(n-2) free trees A000272.
%C A249632 T(n,n-1) = T(n,1) = n^(n-1) rooted trees A000169.
%C A249632 T(n,2) = A081131.
%D A249632 F. Harary and E. Palmer, Graphical Enumeration, Academic Press,1973, page 30, exercise 1.10.
%F A249632 E.g.f.: A(x + y*x) where A(x) is the e.g.f. for A000272.
%e A249632 1,
%e A249632 1,    1,
%e A249632 1,    2,    1,
%e A249632 3,    9,    9,     3,
%e A249632 16,   64,   96,    64,    16,
%e A249632 125,  625,  1250,  1250,  625,   125,
%e A249632 1296, 7776, 19440, 25920, 19440, 7776, 1296
%t A249632 nn = 6; f[x_] := Sum[n^(n - 2) x^n/n!, {n, 1, nn}];
%t A249632 Map[Select[#, # > 0 &] &,
%t A249632   Range[0, nn]! CoefficientList[
%t A249632     Series[f[x + y x] + 1, {x, 0, nn}], {x, y}]] // Grid
%K A249632 nonn,tabl
%O A249632 0,5
%A A249632 _Geoffrey Critzer_, Nov 02 2014