This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249632 #12 Apr 26 2016 12:37:41 %S A249632 1,1,1,1,2,1,3,9,9,3,16,64,96,64,16,125,625,1250,1250,625,125,1296, %T A249632 7776,19440,25920,19440,7776,1296,16807,117649,352947,588245,588245, %U A249632 352947,117649,16807,262144,2097152,7340032,14680064,18350080,14680064,7340032,2097152,262144 %N A249632 Triangular array read by rows. T(n,k) is the number of labeled trees with black and white nodes having exactly k black nodes, n>=0, 0<=k<=n. %C A249632 Row sums = A038058. %C A249632 T(n,n) = T(n,0) = n^(n-2) free trees A000272. %C A249632 T(n,n-1) = T(n,1) = n^(n-1) rooted trees A000169. %C A249632 T(n,2) = A081131. %D A249632 F. Harary and E. Palmer, Graphical Enumeration, Academic Press,1973, page 30, exercise 1.10. %F A249632 E.g.f.: A(x + y*x) where A(x) is the e.g.f. for A000272. %e A249632 1, %e A249632 1, 1, %e A249632 1, 2, 1, %e A249632 3, 9, 9, 3, %e A249632 16, 64, 96, 64, 16, %e A249632 125, 625, 1250, 1250, 625, 125, %e A249632 1296, 7776, 19440, 25920, 19440, 7776, 1296 %t A249632 nn = 6; f[x_] := Sum[n^(n - 2) x^n/n!, {n, 1, nn}]; %t A249632 Map[Select[#, # > 0 &] &, %t A249632 Range[0, nn]! CoefficientList[ %t A249632 Series[f[x + y x] + 1, {x, 0, nn}], {x, y}]] // Grid %K A249632 nonn,tabl %O A249632 0,5 %A A249632 _Geoffrey Critzer_, Nov 02 2014