cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249638 Number of strings of length n over a 5-letter alphabet that begin with a nontrivial palindrome.

Original entry on oeis.org

0, 0, 5, 45, 245, 1305, 6605, 33405, 167405, 838845, 4196045, 20989245, 104955245, 524820945, 2624149445, 13120970445, 65605075445, 328026491505, 1640133571805, 8200673428605, 41003372712605, 205016891401905, 1025084484848405, 5125422563427405
Offset: 0

Views

Author

Peter Kagey, Nov 02 2014

Keywords

Comments

A nontrivial palindrome is a palindrome of length 2 or greater. (E.g., "1" is a trivial palindrome, but "11" and "121" are nontrivial palindromes.)
For example, 0042 is a string in a five letter alphabet of length 4 that begins with a nontrivial palindrome (00).
5 divides a(n) for all n.
Number of walks of n steps that begin with a palindromic sequence on the complete graph K_5 with loops. (E.g., 0, 1, 1, 0, 4, 1, 2 is a valid walk with 7 steps and begins with the palindromic sequence '0110'.)
Limit_{n->oo} a(n)/5^n ~ 0.429951613027098 is the probability that a random, infinite string in a five letter alphabet begins with a nontrivial palindrome.

Examples

			For n=3 the a(3) = 45 valid strings are: 000, 001, 002, 003, 004, 010, 020, 030, 040, 101, 110, 111, 112, 113, 114, 121, 131, 141, 202, 212, 220, 221, 222, 223, 224, 232, 242, 303, 313, 323, 330, 331, 332, 333, 334, 343, 404, 414, 424, 434, 440, 441, 442, 443, 444.
		

Crossrefs

Analogous sequences for k-letter alphabets: A248122 (k=3), A249629 (k=4), A249639 (k=6), A249640 (k=7), A249641 (k=8), A249642 (k=9), A249643 (k=10).

Programs

  • Haskell
    import Data.Ratio
    a 0 = 0; a 1 = 0;
    a n = 5 * a(n - 1) + 5^ceiling(n % 2) - a(ceiling(n % 2)) -- Peter Kagey, Aug 13 2015
  • Mathematica
    a249638[n_] := Block[{f},
      f[0] = f[1] = 0;
      f[x_] := 5*f[x - 1] + 5^Ceiling[x/2] - f[Ceiling[x/2]];
    Table[f[i], {i, 0, n}]]; a249638[23] (* Michael De Vlieger, Dec 27 2014 *)
  • Ruby
    seq = [0, 0]; (2..N).each{ |i| seq << 5 * seq[i-1] + 5**((i+1)/2) - seq[(i+1)/2] }
    

Formula

a(0) = 0; a(1) = 0; a(n+1) = 5*a(n) + 5^ceiling((n+1)/2) - a(ceiling((n+1)/2)).