cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A249652 Decimal expansion of integral_{0..1} Li_3(x)^2 dx, where Li_3 is the trilogarithm function.

Original entry on oeis.org

4, 2, 7, 7, 1, 4, 7, 8, 4, 2, 9, 0, 8, 2, 4, 0, 8, 8, 1, 1, 2, 8, 3, 8, 9, 7, 1, 6, 1, 2, 7, 9, 4, 5, 3, 2, 4, 2, 8, 6, 0, 2, 4, 7, 8, 7, 7, 4, 6, 9, 5, 7, 4, 4, 5, 5, 4, 9, 2, 9, 8, 3, 5, 2, 4, 1, 6, 1, 6, 5, 8, 8, 1, 5, 1, 6, 7, 4, 1, 4, 3, 2, 0, 4, 6, 5, 6, 6, 8, 1, 9, 8, 6, 3, 4, 5, 4, 2, 1, 2, 6, 9
Offset: 0

Views

Author

Jean-François Alcover, Nov 03 2014

Keywords

Examples

			0.4277147842908240881128389716127945324286...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[20 - 8*Zeta[2] - 10*Zeta[3] + (15/2)*Zeta[4] - 2*Zeta[2]*Zeta[3] + Zeta[3]^2, 10, 102] // First
    NIntegrate[PolyLog[3,x]^2,{x,0,1},WorkingPrecision->102] (* Vaclav Kotesovec, Nov 03 2014 *)
  • PARI
    z2=zeta(2); z3=zeta(3); 20 - 8*z2 - 10*z3 + 15*zeta(4)/2 - 2*z2*z3 + z3^2 \\ Charles R Greathouse IV, Apr 20 2016
    
  • Python
    from mpmath import mp, zeta
    mp.dps=103
    z2=zeta(2)
    z3=zeta(3)
    print([int(z) for z in list(str(20 - 8*z2 - 10*z3 + 15*zeta(4)/2 - 2*z2*z3 + z3**2)[2:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

20 - 8*zeta(2) - 10*zeta(3) + (15/2)*zeta(4) - 2*zeta(2)*zeta(3) + zeta(3)^2.
Showing 1-1 of 1 results.