This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249670 #25 Nov 11 2024 22:23:38 %S A249670 1,6,12,28,30,2,56,120,117,45,132,21,182,84,40,496,306,78,380,210,672, %T A249670 198,552,10,775,273,1080,2,870,60,992,2016,176,459,1680,3276,1406,570, %U A249670 2184,36,1722,112,1892,231,390,828,2256,372,2793,4650,408,1274,2862 %N A249670 a(n) = A017665(n)*A017666(n). %C A249670 If n is a k-multiperfect, then a(n) = k. %H A249670 Allan C. Wechsler, <a href="/A249670/b249670.txt">Table of n, a(n) for n = 1..10000</a> %F A249670 a(n) = A064987(n)/A009194(n)^2. %F A249670 a(A000396(n)) = 2 (perfect). %F A249670 a(A005820(n)) = 3 (tri-perfect). %F A249670 For p prime, a(p) = p*(p+1). %t A249670 a249670[n_Integer] := Numerator[DivisorSigma[-1, n]]*Denominator[DivisorSigma[-1, n]]; a249670 /@ Range[80] (* _Michael De Vlieger_, Nov 10 2014 *) %o A249670 (PARI) a(n) = my(ab = sigma(n)/n); numerator(ab)*denominator(ab); %o A249670 (Haskell) %o A249670 a249670 n = div (n * s) (gcd n s ^ 2) %o A249670 where s = sum (filter (\k -> mod n k == 0) [1..n]) %o A249670 -- _Allan C. Wechsler_, Mar 31 2023 %Y A249670 Cf. A000203 (sigma(n)). %Y A249670 Cf. A017665/A017666 (abundancy of n). %Y A249670 Cf. A009194 (gcd(n, sigma(n))), A064987 (n*sigma(n)). %Y A249670 Cf. A000396, A005820, A027687, A046060, A046061. %K A249670 nonn %O A249670 1,2 %A A249670 _Michel Marcus_, Nov 03 2014