This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249697 #8 Nov 04 2014 05:43:28 %S A249697 1,8,9,64,73,516,589,4160,4749,33540,38289,270416,308704,2180232, %T A249697 2488936,17578149 %N A249697 First row of spectral array W(Pi-2). %H A249697 A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149. %o A249697 (PARI) %o A249697 \\ Row i of the generalized Wythoff array W(h), %o A249697 \\ where h is an irrational number between 1 and 2, %o A249697 \\ and m is the number of terms in the vectors a and b. %o A249697 row(h, i, m) = { %o A249697 my( %o A249697 a=vector(m, n, floor(n*h)), %o A249697 b=vector(m, n, floor(n*h/(h-1))), %o A249697 w=[a[a[i]], b[a[i]]], %o A249697 j=3 %o A249697 ); %o A249697 while(1, %o A249697 if(j%2==1, %o A249697 if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w)) %o A249697 , %o A249697 if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w)) %o A249697 ); %o A249697 j++ %o A249697 ) %o A249697 } %o A249697 allocatemem(10^9) %o A249697 row(Pi-2, 1, 10^7) %Y A249697 Cf. A007068, A022159, A022161, A022163, A022165, A249309. %K A249697 nonn,more,hard %O A249697 1,2 %A A249697 _Colin Barker_, Nov 04 2014