A249701 Number of length n+3 0..2 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
39, 69, 125, 221, 377, 659, 1177, 2119, 3805, 6857, 12437, 22681, 41475, 76011, 139645, 257161, 474439, 876539, 1621387, 3002407, 5564769, 10321599, 19156321, 35571383, 66081147, 122803551, 228283091, 424467169, 789412673, 1468380739
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....1....2....1....2....1....2....1....1....2....0....1....1....1....1 ..1....1....0....0....2....2....2....1....0....1....1....1....0....0....1....2 ..2....0....1....1....1....2....0....1....2....1....1....2....1....1....1....1 ..1....0....1....1....0....2....1....1....1....1....1....1....1....2....1....1 ..0....0....1....2....1....0....1....1....1....0....2....0....1....1....1....0 ..1....0....1....1....1....2....1....1....1....1....0....1....0....1....1....1 ..1....0....1....1....1....2....1....2....1....1....1....1....1....1....1....1 ..2....0....1....0....1....2....2....0....0....1....1....2....1....1....0....1 ..0....1....0....1....0....2....1....1....2....1....2....1....2....0....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A249707.
Formula
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) + 2*a(n-4) - 5*a(n-5) + a(n-6) -a(n-7) - 2*a(n-8) + 2*a(n-10).
Empirical g.f.: x*(39 - 48*x + 35*x^2 - 25*x^3 - 127*x^4 - 2*x^5 - 55*x^6 - 36*x^7 + 34*x^8 + 54*x^9) / ((1 + x)*(1 - 2*x + 2*x^2 - 2*x^3)*(1 - 2*x + x^2 - x^3 - x^4 + x^6)). - Colin Barker, Nov 09 2018