cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249703 Number of length n+3 0..4 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

This page as a plain text file.
%I A249703 #6 Jul 23 2025 12:06:04
%S A249703 205,485,1153,2601,5425,11925,27113,61725,137593,307437,694273,
%T A249703 1576625,3567829,8061981,18257849,41462221,94184277,213859241,
%U A249703 485808309,1104769313,2514006025,5722098441,13027345657,29673996009,67626829493
%N A249703 Number of length n+3 0..4 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
%C A249703 Column 4 of A249707
%H A249703 R. H. Hardin, <a href="/A249703/b249703.txt">Table of n, a(n) for n = 1..210</a>
%F A249703 Empirical: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +25*a(n-4) -39*a(n-5) -30*a(n-6) +40*a(n-7) -176*a(n-8) +78*a(n-9) +365*a(n-10) +57*a(n-11) +515*a(n-12) +361*a(n-13) -923*a(n-14) -1037*a(n-15) -1152*a(n-16) -1164*a(n-17) +750*a(n-18) +1980*a(n-19) +1872*a(n-20) +1440*a(n-21) -432*a(n-22) -1728*a(n-23) -864*a(n-24)
%e A249703 Some.solutions.for.n=6
%e A249703 ..3....2....4....1....1....3....4....2....4....3....2....0....1....3....0....0
%e A249703 ..2....2....1....2....1....2....0....2....3....3....2....1....0....1....2....1
%e A249703 ..3....2....4....2....3....2....1....2....0....2....2....4....1....1....3....1
%e A249703 ..3....1....4....2....1....2....1....3....3....3....0....1....1....1....2....2
%e A249703 ..3....4....4....4....0....4....1....2....3....3....2....1....4....0....0....1
%e A249703 ..3....2....4....2....1....2....4....2....3....3....3....1....0....1....2....0
%e A249703 ..4....2....4....0....1....2....1....0....3....3....2....1....1....1....2....1
%e A249703 ..1....0....1....2....4....2....1....2....2....4....0....0....1....3....2....3
%e A249703 ..3....2....4....4....0....4....0....4....3....2....2....1....4....0....0....1
%K A249703 nonn
%O A249703 1,1
%A A249703 _R. H. Hardin_, Nov 04 2014