A249704 Number of length n+3 0..5 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
366, 966, 2524, 6172, 13666, 32500, 80360, 198164, 474302, 1140694, 2782978, 6829394, 16652268, 40525818, 98972744, 242571962, 594328514, 1454961448, 3564476384, 8746203338, 21475833432, 52737244176, 129543959312, 318439317418
Offset: 1
Keywords
Examples
Some solutions for n=6 ..1....3....2....5....0....1....2....2....0....2....5....1....4....2....0....2 ..1....1....3....4....4....5....4....3....4....3....2....2....4....2....5....4 ..3....3....3....4....5....1....2....5....5....0....1....4....3....2....4....1 ..1....3....3....4....4....0....0....3....4....2....2....2....5....0....4....2 ..0....3....3....4....3....1....2....3....4....2....3....2....4....2....1....2 ..1....3....3....4....4....3....5....3....4....5....2....2....4....4....4....2 ..5....2....4....0....4....1....2....3....4....2....2....2....1....2....4....2 ..1....4....1....5....5....1....0....1....4....0....2....4....5....0....5....0 ..0....3....3....4....1....0....2....4....3....2....3....1....4....2....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +45*a(n-4) -80*a(n-5) +35*a(n-6) -757*a(n-8) +513*a(n-9) +28*a(n-10) +28*a(n-11) +6071*a(n-12) +1434*a(n-13) +314*a(n-14) -486*a(n-15) -26788*a(n-16) -25212*a(n-17) -13792*a(n-18) -4416*a(n-19) +68776*a(n-20) +102232*a(n-21) +67200*a(n-22) +29760*a(n-23) -93984*a(n-24) -186624*a(n-25) -130176*a(n-26) -43776*a(n-27) +69120*a(n-28) +138240*a(n-29) +69120*a(n-30)
Comments