A249706 Number of length n+3 0..7 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
904, 2864, 8688, 24032, 57912, 156416, 442144, 1235840, 3295784, 8902160, 24576568, 68205968, 186882480, 511124496, 1407327072, 3893357456, 10747255576, 29617387520, 81753189024, 226221330256, 626221254528, 1732751390816
Offset: 1
Keywords
Examples
Some solutions for n=6 ..4....2....6....1....4....4....1....0....2....2....4....2....4....4....6....4 ..3....0....3....7....4....3....2....1....6....0....1....0....3....3....3....6 ..0....2....3....4....3....5....2....1....6....3....1....2....3....0....6....5 ..3....2....3....4....7....4....3....5....6....2....0....2....3....3....6....5 ..3....2....4....2....4....4....2....1....6....2....5....4....0....5....6....1 ..4....2....3....5....4....4....1....0....6....2....1....0....3....3....7....5 ..3....6....1....4....2....0....2....1....7....1....1....2....3....1....3....5 ..3....0....3....4....5....4....5....1....3....3....1....2....6....3....6....6 ..1....2....6....1....4....5....2....6....6....2....3....6....0....5....6....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A249707.
Formula
Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +111*a(n-4) -308*a(n-5) +280*a(n-6) -84*a(n-7) -5194*a(n-8) +8288*a(n-9) -3066*a(n-10) +130820*a(n-12) -74128*a(n-13) -10560*a(n-14) -8848*a(n-15) -2004617*a(n-16) -633508*a(n-17) -130504*a(n-18) +130916*a(n-19) +20088708*a(n-20) +21173952*a(n-21) +13092164*a(n-22) +5552064*a(n-23) -132853024*a(n-24) -224564176*a(n-25) -190931472*a(n-26) -114274368*a(n-27) +557555040*a(n-28) +1305213120*a(n-29) +1329331968*a(n-30) +881028864*a(n-31) -1386528192*a(n-32) -4476415104*a(n-33) -5034923712*a(n-34) -3297853440*a(n-35) +1793560320*a(n-36) +8714615040*a(n-37) +10059033600*a(n-38) +5654707200*a(n-39) -1157068800*a(n-40) -7838208000*a(n-41) -7838208000*a(n-42) -2612736000*a(n-43).
Comments