cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249711 Number of length 5+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.

Original entry on oeis.org

38, 377, 1724, 5425, 13666, 29673, 57912, 104289, 176350, 283481, 437108, 650897, 940954, 1326025, 1827696, 2470593, 3282582, 4294969, 5542700, 7064561, 8903378, 11106217, 13724584, 16814625, 20437326, 24658713, 29550052, 35188049, 41655050
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2014

Keywords

Examples

			Some solutions for n=6:
..0....2....1....1....0....2....5....4....0....5....2....3....0....6....3....4
..1....2....5....5....4....5....2....4....3....2....2....3....2....0....3....2
..5....0....6....6....3....3....3....6....5....6....2....3....2....2....3....1
..1....6....5....5....3....3....3....4....3....5....6....6....4....2....1....2
..0....2....5....5....3....3....5....4....1....5....1....1....2....2....3....2
..1....2....5....5....0....0....3....0....3....5....2....3....2....2....5....2
..6....2....4....4....6....3....2....4....3....3....2....3....1....1....3....3
..1....2....5....6....3....5....3....5....5....5....3....6....6....5....3....1
		

Crossrefs

Row 5 of A249707.

Formula

Empirical: a(n) = (5/3)*n^5 + 10*n^4 + 16*n^3 + 8*n^2 + (4/3)*n + 1.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: x*(38 + 149*x + 32*x^2 - 24*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)