A249712 Number of length 6+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
52, 659, 3440, 11925, 32500, 75495, 156416, 297321, 528340, 889339, 1431728, 2220413, 3335892, 4876495, 6960768, 9730001, 13350900, 18018403, 23958640, 31432037, 40736564, 52211127, 66239104, 83252025, 103733396, 128222667
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....2....3....2....4....2....4....5....3....0....5....0....3....5....6....6 ..3....6....3....0....5....5....2....4....0....3....6....5....3....4....2....5 ..6....4....1....2....3....2....2....4....2....3....5....5....3....6....3....2 ..4....4....5....6....4....1....0....1....2....6....5....5....3....5....3....5 ..4....0....3....2....4....2....2....4....2....3....4....5....2....5....3....5 ..1....4....3....2....4....6....2....4....5....3....5....5....3....5....3....5 ..4....4....3....0....5....2....2....4....1....2....5....5....3....5....5....6 ..4....4....1....5....4....1....2....5....2....4....6....6....4....2....3....5 ..6....4....5....2....2....2....2....3....2....3....2....5....3....5....3....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 6 of A249707.
Formula
Empirical: a(n) = (1/5)*n^6 + (73/15)*n^5 + 18*n^4 + 22*n^3 + (34/5)*n^2 - (13/15)*n + 1.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: x*(52 + 295*x - 81*x^2 - 136*x^3 + 20*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)