This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249747 #10 Dec 13 2014 00:38:27 %S A249747 1,2,8,51,496,6041,97155,1746481,38377034,1053921489,31722366805, %T A249747 1127475187757,45429396874080,1910408631449923,87682336584597009, %U A249747 4571067440374822934,260160909199262899454,15823372061924831882182,1034588557961336117180784,72606463908572608290939197,5235472173106695729625747152,407296805992490241506213234700 %N A249747 a(n) = floor((A002110(n) * A054272(n)) / A001248(n)). %H A249747 Antti Karttunen, <a href="/A249747/b249747.txt">Table of n, a(n) for n = 1..100</a> %F A249747 a(n) = floor((A002110(n) * A054272(n)) / A001248(n)). %F A249747 The ratio a(n) / A005867(n) seems to stay near 1. Note that A005867(n) = A000010(A002110(n)). See also formulas in A054272. %o A249747 (MIT/GNU Scheme) (define (A249747 n) (floor->exact (/ (* (A002110 n) (A054272 n)) (A001248 n)))) %o A249747 (PARI) %o A249747 default(primelimit, 2^31 + 2^30); %o A249747 A002110(n) = prod(i=1, n, prime(i)); %o A249747 A054272(n) = 1 + primepi(prime(n)^2) - n; %o A249747 A249747(n) = (A054272(n)*A002110(n))\(prime(n)^2); %o A249747 for(n=1, 100, write("b249747.txt", n, " ", A249747(n))); %Y A249747 Cf. A000010, A001248, A002110, A005867, A054272. %K A249747 nonn %O A249747 1,2 %A A249747 _Antti Karttunen_, Dec 08 2014