This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249759 #38 Sep 08 2022 08:46:10 %S A249759 3,5,17,65537 %N A249759 Primes p such that sigma(p-1) is a prime q. %C A249759 Subsequence of {A023194(n)+1}. %C A249759 Conjectures: 1) sequence is finite; 2) sequence is a subsequence of A019434 (Fermat primes); 3) sequence consists of Fermat primes p such that sigma(p-1) is a Mersenne prime; 4) a(n) = (A249761(n)+3)/2. %C A249759 3 is the only prime p such that sigma(p+1) is prime, i.e., 3 is the only prime p such that sigma(p-1) and sigma(p+1) are both primes. %C A249759 Conjecture: 3 is the only number n such that n and sigma(n+1) are both prime. %C A249759 Primes p such that A051027(p-1) = sigma(sigma(p-1)) = 2*(p-1). Subsequence of A256438. - _Jaroslav Krizek_, Mar 29 2015 %C A249759 From _Jaroslav Krizek_, Mar 17 2016: (Start) %C A249759 Primes p such that A000203(A000010(p)) = sigma(phi(p)) is a prime. %C A249759 Prime terms from A062514 and A270413, A270414, A270415 and A270416. (End) %C A249759 From _Jaroslav Krizek_, Nov 27 2016: (Start) %C A249759 Corresponding values of primes q are in A249761: 3, 7, 31, 131071, ... %C A249759 Conjecture: subsequence of A256438 and A278741. %C A249759 Conjecture: also primes p such that tau(p-1) is a prime q; corresponding values of primes q are 2, 3, 5, 17. (End) %F A249759 a(n) = A249760(n) + 1. %F A249759 Sigma(a(n)-1) = A249761(n). %e A249759 Prime 17 is in the sequence because sigma(17-1) = sigma(16) = 31 (prime). %p A249759 with(numtheory): A249759:=n->`if`(isprime(n) and isprime(sigma(n-1)), n, NULL): seq(A249759(n), n=1..6*10^5); # _Wesley Ivan Hurt_, Nov 14 2014 %t A249759 Select[Range[10^5], PrimeQ[#]&& PrimeQ[DivisorSigma[1, # - 1]] &] (* _Vincenzo Librandi_, Nov 14 2014 *) %t A249759 Select[Prime[Range[7000]],PrimeQ[DivisorSigma[1,#-1]]&] (* _Harvey P. Dale_, Jun 14 2020 *) %o A249759 (Magma) [p: p in PrimesUpTo(1000000) | IsPrime(SumOfDivisors(p-1))] %o A249759 (PARI) lista(nn) = {forprime(p=1, nn, if (isprime(sigma(p-1)), print1(p, ", ")););} \\ _Michel Marcus_, Nov 14 2014 %Y A249759 Cf. A000203, A000668, A019434, A023194, A249760, A249761. %K A249759 nonn,more %O A249759 1,1 %A A249759 _Jaroslav Krizek_, Nov 13 2014