This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249763 #27 Sep 08 2022 08:46:10 %S A249763 1,2,8,18,49,72,98,128,196,200,242,288,361,392,441,676,968,1369,1521, %T A249763 1568,1764,1800,2178,2401,2450,2888,3200,3362,3528,3969,4232,5000, %U A249763 5476,5776,5929,6241,6272,7056,7200,7442,7688,7938,8281,8450,8649,9025,9522,9604 %N A249763 Numbers k such that sigma(k) + 2 is prime. %C A249763 Except for 2, subsequence of nonprime numbers (A018252). %C A249763 All odd terms are squares. - _Michel Marcus_, Dec 09 2014 %C A249763 Each term is either a square or twice a square. - _Robert Israel_, Dec 09 2014 %H A249763 Robert Israel, <a href="/A249763/b249763.txt">Table of n, a(n) for n = 1..10000</a> %e A249763 8 is in the sequence because sigma(8)+2 = 15+2 = 17 (prime). %p A249763 N:= 10^5: # to get all terms <= N %p A249763 select(n -> isprime(numtheory:-sigma(n)+2), {seq(i^2,i=1..floor(sqrt(N))), seq(2*i^2,i=1..floor(sqrt(N/2)))} ); %p A249763 # if using Maple 11 or earlier, uncomment the next line %p A249763 # sort(convert(%,list)); # _Robert Israel_, Dec 09 2014 %t A249763 Select[Range[10000], PrimeQ[DivisorSigma[1, #] + 2] &] (* _Vincenzo Librandi_, Nov 14 2014 *) %o A249763 (Magma) [n: n in[1..100000] | IsPrime(SumOfDivisors(n) + 2)] %o A249763 (PARI) for(n=1,10^5,if(isprime(sigma(n)+2),print1(n,", "))) \\ _Derek Orr_, Nov 13 2014 %Y A249763 Cf. A000040, A000203, A018252. %K A249763 nonn,easy %O A249763 1,2 %A A249763 _Jaroslav Krizek_, Nov 13 2014