cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249771 Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order A025487(n) with k invariant factors (2 <= n, 1 <= k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 5, 2, 2, 1, 3, 1, 3, 3, 2, 1, 1, 1, 1, 3, 5, 1, 2
Offset: 2

Views

Author

Álvar Ibeas, Nov 06 2014

Keywords

Comments

The length of n-th row is A051282(n).
Signatures differing only by a (trailing) list of ones give identical rows.

Examples

			First rows:
1;
1,1;
1;
1,1,1;
1,1;
1,2,1,1;
1,1,1;
1;
1,2,2,1,1;
1,3;
...
		

Crossrefs

Refinement of A050360. Last row elements: A249773. Cf. A249770, A052304.

Formula

T(n,1) = 1. If k > 1 and the prime signature is (e_1,...,e_s), T(n,k) = Sum(Product(A008284(e_i,k), i in I) * Product(A026820(e_i,k-1), i not in I)), where the sum is taken over nonempty subsets I of {1,...,s}.
T(n,k) = A249770(A025487(n),k).
T(n,1) + T(n,2) = A052304(n).