cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249776 Decimal expansion of the connective constant of the (3.12^2) lattice.

Original entry on oeis.org

1, 7, 1, 1, 0, 4, 1, 2, 9, 6, 8, 4, 4, 8, 4, 8, 4, 6, 4, 1, 1, 7, 0, 8, 7, 4, 6, 3, 1, 0, 4, 4, 5, 4, 0, 6, 7, 9, 9, 3, 2, 1, 9, 3, 2, 6, 9, 2, 4, 8, 1, 9, 5, 9, 7, 7, 0, 0, 8, 0, 7, 8, 5, 8, 3, 9, 4, 9, 2, 5, 0, 2
Offset: 1

Views

Author

Keywords

Comments

An algebraic integer of degree 12: largest real root of x^12 - 4x^8 - 8x^7 - 4x^6 + 2x^4 + 8x^3 + 12x^2 + 8x + 2.

Examples

			1.71104129684484846411708746310445406799321932692481959770080785839492...
		

Crossrefs

Other connective constants: A179260 (hexagonal or honeycomb lattice).

Programs

  • Mathematica
    (* Illustration of the (3.12^2) lattice. *)
    hex312[frac_] := {Re[#], Im[#]} & /@
      Flatten[Table[
        With[{a = Exp[2 Pi I (n - 1/2)/6], b = Exp[2 Pi I ( n + 1/2)/6],
          c = Exp[2 Pi I (n + 3/2)/6]}, {(1 - frac) b +
           frac a, (1 - frac) b + frac c}], {n, 6}]]
    shiftPoly[shifts_, coords_] :=
    Line[Append[#, #[[1]]]] & /@
      Outer[#1 + #2 &, shifts*1.001, coords, 1, 1]
    tri = 1/5; (* Arbitrary, subject to 0 < tri < 1/2; determines size of triangles compared to hexagons. *)
    Graphics[{Gray,
      shiftPoly[{{0, 0}, {Sqrt[3], 0}, {2 Sqrt[3], 0}, {3 Sqrt[3],
         0}, {Sqrt[3]/2, 3/2}, {3 Sqrt[3]/2, 3/2}, {5 Sqrt[3]/2,
         3/2}, {7 Sqrt[3]/2, 3/2}, {0, 3}, {Sqrt[3], 3}, {2 Sqrt[3],
         3}, {3 Sqrt[3], 3}, {Sqrt[3]/2, 9/2}, {3 Sqrt[3]/2,
         9/2}, {5 Sqrt[3]/2, 9/2}, {7 Sqrt[3]/2, 9/2}}, hex312[tri]]}]
  • PARI
    polrootsreal(x^12-4*x^8-8*x^7-4*x^6+2*x^4+8*x^3+12*x^2+8*x+2)[4]