cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249777 Let z = A084937: a(n) = number of numbers <= z(n) that are != z(k) for k=1..n-1 and not coprime to z(n-1) and z(n-2).

This page as a plain text file.
%I A249777 #5 Nov 06 2014 00:14:58
%S A249777 0,0,0,1,0,1,2,1,2,3,0,5,6,0,6,7,3,2,10,1,5,6,3,7,10,0,10,13,0,13,16,
%T A249777 0,5,15,1,11,16,1,6,15,2,11,16,4,16,17,2,17,12,5,16,17,3,17,18,0,20,
%U A249777 21,0,23,28,0,23,27,1,15,30,3,17,26,4,19,28,2,21
%N A249777 Let z = A084937: a(n) = number of numbers <= z(n) that are != z(k) for k=1..n-1 and not coprime to z(n-1) and z(n-2).
%C A249777 a(A249684(n)) = 0.
%H A249777 Reinhard Zumkeller, <a href="/A249777/b249777.txt">Table of n, a(n) for n = 1..10000</a>
%e A249777 .   n | A084937(n) |    unused numbers less than A084937(n)   | a(n)
%e A249777 . ----+------------+------------------------------------------+-----
%e A249777 .   3 |          3 |  _                                       |    0
%e A249777 .   4 |          5 |  4                                       |    1
%e A249777 .   5 |          4 |  _                                       |    0
%e A249777 .   6 |          7 |  6                                       |    1
%e A249777 .   7 |          9 |  6, 8                                    |    2
%e A249777 .   8 |          8 |  6                                       |    1
%e A249777 .   9 |         11 |  6, 10                                   |    2
%e A249777 .  10 |         13 |  6, 10, 12                               |    3
%e A249777 .  11 |          6 |  _                                       |    0
%e A249777 .  12 |         17 |  10, 12, 14, 15, 16                      |    5
%e A249777 .  13 |         19 |  10, 12, 14, 15, 16, 18                  |    6
%e A249777 .  14 |         10 |  _                                       |    0
%e A249777 .  15 |         21 |  12, 14, 15, 16, 18, 20                  |    6
%e A249777 .  16 |         23 |  12, 14, 15, 16, 18, 20, 22              |    7
%e A249777 .  17 |         16 |  12, 14, 15                              |    3
%e A249777 .  18 |         15 |  12, 14                                  |    2
%e A249777 .  19 |         29 |  12, 14, 18, 20, 22, 24, 25, 26, 27, 28  |   10
%e A249777 .  20 |         14 |  12                                      |    1
%e A249777 .  21 |         25 |  12, 18, 20, 22, 24                      |    5
%e A249777 .  22 |         27 |  12, 18, 20, 22, 24, 26                  |    6
%e A249777 .  23 |         22 |  12, 18, 20                              |    3
%e A249777 .  24 |         31 |  12, 18, 20, 24, 26, 28, 30              |    7
%e A249777 .  25 |         35 |  12, 18, 20, 24, 26, 28, 30, 32, 33, 34  |   10 .
%o A249777 (Haskell)
%o A249777 a249777 n = a249777_list !! (n-1)
%o A249777 a249777_list = 0 : 0 : f 2 1 [3..] where
%o A249777    f x y zs = g zs 0 where
%o A249777       g (u:us) w | gcd y u > 1 || gcd x u > 1 = g us (w + 1)
%o A249777                  | otherwise = w : f u x (delete u zs)
%Y A249777 Cf. A084937, A249684.
%K A249777 nonn
%O A249777 1,7
%A A249777 _Reinhard Zumkeller_, Nov 05 2014