This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249784 #57 Mar 26 2022 14:30:39 %S A249784 1,5,28,513,3126,2176875649,823544,50331649,774840979, %T A249784 100000000020000000001,285311670612,158993694406808436568227841, %U A249784 302875106592254,123476695691247958050243432972289,191751059232884087544279144287109376,73786976294838206465 %N A249784 Number of divisors of n^(n^n). %C A249784 An infinite number of squares are terms of this sequence. %C A249784 Proof: for any n of the form (p*q)^k (with p and q distinct primes), a(n) = (k * n^n + 1)^2. %C A249784 It seems likely that the only nontrivial palindromes in this sequence comprise a subset of these squares and occur at n = 10^(10^M) for M>=0; at such values of n, a(n) = (10^(10^(10^M + M) + M) + 1)^2 = A033934(10^(10^M + M) + M). The actual decimal expansion of each of these numbers is of the form 1000...0002000...0001, where the total number of zero digits on each side of the 2 is 10^(10^M + M) + M - 1. %H A249784 Jon E. Schoenfield, <a href="/A249784/b249784.txt">Table of n, a(n) for n = 1..155</a> %F A249784 a(n) = A000005(A002488(n)). %F A249784 a(n) = Product_{j=1..m} (e_j * n^n + 1) %F A249784 where m = number of distinct prime factors of n %F A249784 and e_j = multiplicity of the j-th prime factor. %F A249784 If n is a prime p, then m=1 and e_1=1, so %F A249784 a(p) = p^p + 1 = A000312(p) + 1 = A014566(p). %F A249784 If n=10^L, then m=2 and e_1=e_2=L, so %F A249784 a(10^L) = (L * 10^(L * 10^L) + 1)^2. %e A249784 12 = 2^2 * 3^1 (two distinct prime factors, with multiplicities e_1=2 and e_2=1), so a(12) = (2*k+1)*(1*k+1) = 2*k^2 + 3*k + 1 where k = 12^12, so a(12) = 158993694406808436568227841. %o A249784 (Magma) // program to generate b-file %o A249784 for n in [1..155] do %o A249784 k:=n^n; %o A249784 F:=Factorization(n); %o A249784 prod:=1; %o A249784 for j in [1..#F] do %o A249784 prod*:=F[j,2]*k + 1; %o A249784 end for; %o A249784 n, prod; %o A249784 end for; %o A249784 (Sage) %o A249784 def A249784(n): %o A249784 n_exp_n = n^n %o A249784 return mul(exp[1]*n_exp_n + 1 for exp in factor(n)) %o A249784 [A249784(n) for n in (1..16)] # _Peter Luschny_, Nov 08 2014 %o A249784 (PARI) a(n)=my(v=factor(n)[,2]*n^n); prod(i=1,#v,v[i]+1) \\ _Charles R Greathouse IV_, Jul 21 2015 %Y A249784 Cf. A000005, A000312, A002488, A014566, A033934, A225739. %K A249784 nonn %O A249784 1,2 %A A249784 _Jon E. Schoenfield_, Nov 05 2014