cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249822 Square array of permutations: A(row,col) = A078898(A246278(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

This page as a plain text file.
%I A249822 #23 Dec 18 2014 02:03:46
%S A249822 1,2,1,3,2,1,4,3,2,1,5,5,3,2,1,6,4,9,3,2,1,7,8,4,14,3,2,1,8,6,12,4,28,
%T A249822 3,2,1,9,14,5,21,4,36,3,2,1,10,13,42,5,33,4,57,3,2,1,11,11,17,92,5,45,
%U A249822 4,67,3,2,1,12,7,19,33,305,5,63,4,93,3,2,1,13,23,6,25,39,455,5,80,4,139,3,2,1,14,9,59,6,43,61,944,5,116,4,154,3,2,1,15,17,7,144,6,52,70,1238,5,148,4,210,3,2,1
%N A249822 Square array of permutations: A(row,col) = A078898(A246278(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
%e A249822 The top left corner of the array:
%e A249822 1, 2, 3,  4,  5,   6,   7,    8,    9,   10,  11,   12,  13,   14,   15, ...
%e A249822 1, 2, 3,  5,  4,   8,   6,   14,   13,   11,   7,   23,   9,   17,   18, ...
%e A249822 1, 2, 3,  9,  4,  12,   5,   42,   17,   19,   6,   59,   7,   22,   26, ...
%e A249822 1, 2, 3, 14,  4,  21,   5,   92,   33,   25,   6,  144,   7,   32,   39, ...
%e A249822 1, 2, 3, 28,  4,  33,   5,  305,   39,   43,   6,  360,   7,   48,   50, ...
%e A249822 1, 2, 3, 36,  4,  45,   5,  455,   61,   52,   6,  597,   7,   63,   68, ...
%e A249822 1, 2, 3, 57,  4,  63,   5,  944,   70,   76,   6, 1053,   7,   95,   84, ...
%e A249822 1, 2, 3, 67,  4,  80,   5, 1238,   96,   99,   6, 1502,   7,  106,  121, ...
%e A249822 ...
%o A249822 (Scheme)
%o A249822 (define (A249822 n) (A249822bi (A002260 n) (A004736 n)))
%o A249822 (define (A249822bi row col) (A078898 (A246278bi row col))) ;; Code for A246278bi given in A246278.
%Y A249822 Inverse permutations can be found from table A249821.
%Y A249822 Row k+1 is a right-to-left composition of the first k rows of A251722.
%Y A249822 Row 1: A000027 (an identity permutation), Row 2: A048673, Row 3: A249824, Row 4: A249826.
%Y A249822 Column 4: A250474, Column 6: A250477, Column 8: A250478.
%Y A249822 Cf. A002260, A004736, A078898, A246278, A249818.
%K A249822 nonn,tabl
%O A249822 1,2
%A A249822 _Antti Karttunen_, Nov 06 2014