cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249831 A(n,n) = 1, A(n,k) = A(n,k+1)*k / gcd(A(n,k+1),k)^2 if n>k, A(n,k) = A(n,k-1)*k / gcd(A(n,k-1),k)^2 if n square array A(n,k), n>=1, k>=1, read by antidiagonals.

This page as a plain text file.
%I A249831 #19 Sep 21 2018 22:09:28
%S A249831 1,2,1,6,1,2,6,3,2,6,30,12,1,6,6,5,60,4,3,6,30,35,10,20,1,12,30,5,280,
%T A249831 70,30,5,4,60,5,35,2520,140,210,30,1,20,10,35,70,252,1260,420,210,6,5,
%U A249831 30,70,70,70,2772,126,420,420,42,1,30,210,35,70,7
%N A249831 A(n,n) = 1, A(n,k) = A(n,k+1)*k / gcd(A(n,k+1),k)^2 if n>k, A(n,k) = A(n,k-1)*k / gcd(A(n,k-1),k)^2 if n<k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
%H A249831 Alois P. Heinz, <a href="/A249831/b249831.txt">Antidiagonals n = 1..141, flattened</a>
%e A249831 Square array A(n,k) begins:
%e A249831 :   1,  2,  6,   6,  30,  5,  35, 280, 2520,  252, ...
%e A249831 :   1,  1,  3,  12,  60, 10,  70, 140, 1260,  126, ...
%e A249831 :   2,  2,  1,   4,  20, 30, 210, 420,  420,   42, ...
%e A249831 :   6,  6,  3,   1,   5, 30, 210, 420,  420,   42, ...
%e A249831 :   6,  6, 12,   4,   1,  6,  42,  84,   84,  210, ...
%e A249831 :  30, 30, 60,  20,   5,  1,   7,  56,  504, 1260, ...
%e A249831 :   5,  5, 10,  30,  30,  6,   1,   8,   72,  180, ...
%e A249831 :  35, 35, 70, 210, 210, 42,   7,   1,    9,   90, ...
%e A249831 :  70, 70, 35, 105, 420, 84,  56,   8,    1,   10, ...
%e A249831 :  70, 70, 35, 105, 420, 84, 504,  72,    9,    1, ...
%p A249831 A:= proc(n, k) option remember; `if`(k=n, 1,
%p A249831       (r-> r*k/igcd(r, k)^2)(A(n, k+`if`(n>k, 1, -1))))
%p A249831     end:
%p A249831 seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
%t A249831 A[n_, k_] := A[n, k] = If[k == n, 1, Function[{r}, r*k/GCD[r, k]^2][A[n, k+If[n>k, 1, -1]]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 14}] // Flatten (* _Jean-François Alcover_, Dec 02 2014, translated from Maple *)
%Y A249831 Column k=1 gives A055204(n-1) for n>1.
%Y A249831 Row n=1 gives A008339(k+1).
%Y A249831 Main diagonal gives: A000012.
%K A249831 nonn,tabl,look
%O A249831 1,2
%A A249831 _Alois P. Heinz_, Nov 06 2014