cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249853 Numbers whose cubes become squares if one of their digits is deleted.

This page as a plain text file.
%I A249853 #28 Oct 27 2023 22:15:20
%S A249853 4,5,6,10,20,21,25,40,44,64,90,100,129,160,200,250,360,400,490,500,
%T A249853 600,640,810,1000,1210,1440,1690,1960,2000,2025,2100,2250,2500,2560,
%U A249853 2890,3240,3610,4000,4400,4410,4840,5025,5290,5760,6250,6400,6760,7290,7840,8410
%N A249853 Numbers whose cubes become squares if one of their digits is deleted.
%C A249853 A245096 gives the numbers whose squares become cubes if one of their digit is deleted.
%C A249853 Numbers with single-digit cubes are not included. - _Davin Park_, Dec 30 2016
%H A249853 Alois P. Heinz, <a href="/A249853/b249853.txt">Table of n, a(n) for n = 1..1000</a> (first 100 terms from Paolo P. Lava)
%e A249853 21^3 = 9261 and sqrt(961) = 31.
%e A249853 44^3 = 85184 and sqrt(5184) = 72.
%e A249853 45625^3 = 94974853515625 and sqrt(9474853515625) = 3078125.
%p A249853 with(numtheory): P:=proc(q) local a,k,n;
%p A249853 for n from 1 to q do a:=n^3; for k from 1 to ilog10(a) do
%p A249853 if type(sqrt(trunc(a/10^(k+1))*10^k+(a mod 10^k)),integer)
%p A249853 then print(n); break; fi; od; od; end: P(10^9);
%t A249853 f[n_] := !MissingQ@SelectFirst[Delete[IntegerDigits[n^3], #] & /@ Range[IntegerLength[n^3]], IntegerQ@Sqrt@FromDigits@# &];
%t A249853 Select[Range[4, 1000], f] (* _Davin Park_, Dec 30 2016 *)
%Y A249853 Cf. A249587, A225885.
%K A249853 nonn,base
%O A249853 1,1
%A A249853 _Paolo P. Lava_, Nov 07 2014