This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249857 #12 Nov 12 2014 23:17:09 %S A249857 0,0,0,1,0,1,2,1,2,3,0,4,5,0,5,6,2,2,8,1,5,6,3,7,9,0,9,11,0,11,13,0,5, %T A249857 13,1,10,14,1,6,14,2,11,15,4,15,16,2,16,12,5,16,17,3,17,18,0,19,20,0, %U A249857 21,24,0,21,24,1,15,26,3,17,24,4,19,26,2,21,26 %N A249857 Let z = A084937: a(n) = number of even numbers <= z(n) that are != z(k) for k=1..n-1 and not coprime to z(n-1) and z(n-2). %C A249857 a(n) = A249777(n) - A249856(n). %e A249857 . | | unused even numbers < A084937(n) | %e A249857 . n | A084937(n) | [uncounted odd terms in brackets] | a(n) %e A249857 . ----+------------+------------------------------------------+----- %e A249857 . 3 | 3 | _ | 0 %e A249857 . 4 | 5 | 4 | 1 %e A249857 . 5 | 4 | _ | 0 %e A249857 . 6 | 7 | 6 | 1 %e A249857 . 7 | 9 | 6,8 | 2 %e A249857 . 8 | 8 | 6 | 1 %e A249857 . 9 | 11 | 6,10 | 2 %e A249857 . 10 | 13 | 6,10,12 | 3 %e A249857 . 11 | 6 | _ | 0 %e A249857 . 12 | 17 | 10,12,14,[15],16 | 4 %e A249857 . 13 | 19 | 10,12,14,[15],16,18 | 5 %e A249857 . 14 | 10 | _ | 0 %e A249857 . 15 | 21 | 12,14,[15],16,18,20 | 5 %e A249857 . 16 | 23 | 12,14,[15],16,18,20,22 | 6 %e A249857 . 17 | 16 | 12,14,[15] | 2 %e A249857 . 18 | 15 | 12,14 | 2 %e A249857 . 19 | 29 | 12,14,18,20,22,24,[25],26,[27],28 | 8 %e A249857 . 20 | 14 | 12 | 1 %e A249857 . 21 | 25 | 12,18,20,22,24 | 5 %e A249857 . 22 | 27 | 12,18,20,22,24,26 | 6 %e A249857 . 23 | 22 | 12,18,20 | 3 %e A249857 . 24 | 31 | 12,18,20,24,26,28,30 | 7 %e A249857 . 25 | 35 | 12,18,20,24,26,28,30,32,[33],34 | 9 . %o A249857 (Haskell) %o A249857 a249857 = sum . map ((1 -) . flip mod 2) . (uss !!) %o A249857 -- See A249856 for definition of uss. %Y A249857 Cf. A084937, A249777, A249856, A249858. %Y A249857 For a different way to look at the missing numbers in A084937, see A249686, A250099, A250100. %K A249857 nonn %O A249857 1,7 %A A249857 _Reinhard Zumkeller_, Nov 09 2014