A249861 a(n) are values of k that yield "record-breaking" integer sequence lengths for the recursion: b(i) = 3*(b(i-1) + b(i-2))/2, with b(0) = 1 and b(1) = k.
1, 5, 37, 101, 229, 485, 2533, 6629, 23013, 88549, 219621, 481765, 1006053, 3103205, 7297509, 24074725, 158292453, 1232034277, 3379517925, 7674485221, 282552392165, 1382064019941, 5780110531045, 14576203553253, 84944947730917, 647894901152229
Offset: 1
Examples
Subtracting 1 from Nmax gives the exponents of 2 needed to generate a(n) using the formula above, as: a(1) = 1 (by definition) a(2) = 1 + 2^(3-1) = 5 a(3) = 5 + 2^(6-1) = 37 a(4) = 37 + 2^(7-1) = 101 ... etc.
Crossrefs
Cf. A083858.
Formula
a(n) = a(n-1) + 2^(Nmax(a(n-1)) - 1), where Nmax at a(n-1) (i.e., the prior record-breaking k value) must be found by calculation of b(i) and "observation".
Comments