cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249869 Triangle giving the area of primitive Pythagorean triangles, with zero entries for non-primitive triangles.

This page as a plain text file.
%I A249869 #27 Nov 28 2016 06:36:05
%S A249869 6,0,30,60,0,84,0,210,0,180,210,0,0,0,330,0,630,0,924,0,546,504,0,
%T A249869 1320,0,1560,0,840,0,1386,0,2340,0,0,0,1224,990,0,2730,0,0,0,3570,0,
%U A249869 1710,0,2574,0,4620,0,5610,0,5016,0,2310,1716,0,0,0,7140,0,7980,0,0,0,3036
%N A249869 Triangle giving the area of primitive Pythagorean triangles, with zero entries for non-primitive triangles.
%C A249869 See A249866 for comments and references.
%C A249869 For the sorted areas of all primitive Pythagorean triangles (x, y, z) with, say y even, see A024406.
%C A249869 Note that in a row > N there may appear smaller numbers than the maximal number up to row N. Therefore the sorted nonvanishing numbers up to a given row N will in general not produce a subsequence of A024406. The minimal areas in rows n = 2..20 are 6, 30, 60, 180, 210, 546, 504, 1224, 990, 2310, 1716, 3900, 2730, 6090, 4080, 8976, 5814, 12654, 7980. For example, one has to go up to row n = 16 to cover all areas <= 4080.
%C A249869 See the link for more details on a safe row number n = N to cover all areas not exceeding a given one, and also for all areas <= 10^6 with their squarefree parts. - _Wolfdieter Lang_, Nov 25 2016
%H A249869 Wolfdieter Lang, <a href="/A249869/a249869.pdf">First rows of the triangle.</a>
%H A249869 Wolfdieter Lang, <a href="/A249869/a249869_2.pdf">A Note on the Area table A249869 for Primitive Pythagorean Triangles.</a>
%F A249869 T(n, m) = n*m*(n+m)(n-m) if n > m >= 1, (-1)^(n+m) = -1 and gcd(n,m) = 1, else 0.
%e A249869 The triangle T(n, m) begins:
%e A249869 n\m    1    2    3     4     5     6    7     8     9   10    11
%e A249869 2:     6
%e A249869 3:     0   30
%e A249869 4:    60    0   84
%e A249869 5:     0  210    0   180
%e A249869 6:   210    0    0     0   330
%e A249869 7:     0  630    0   924     0   546
%e A249869 8:   504    0 1320     0  1560     0  840
%e A249869 9:     0 1386    0  2340     0     0    0 1224
%e A249869 10:  990    0 2730     0     0     0 3570    0   1710
%e A249869 11:    0 2574    0  4620     0  5610    0 5016      0 2310
%e A249869 12: 1716    0    0     0  7140     0 7980     0     0    0  3036
%e A249869 ...
%e A249869 For more rows see the link.
%e A249869 T(5, 2) = 210 for the primitive triangle (21, 20, 29).
%e A249869 T(6, 1) = 210 for the primitive triangle (35, 12, 37).
%Y A249869 Cf. A024406, A249866, A258150 (one sixth of this triangle), A225949 (leg sums), A225951 (perimeters), A222946 (hypotenuses), A208854 (odd catheti), A208855 (even catheti), A278711.
%K A249869 nonn,easy,tabl
%O A249869 2,1
%A A249869 _Wolfdieter Lang_, Dec 03 2014