cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249870 Rational parts of the Q(sqrt(3)) integers giving the square of the radii for lattice point circles for the Archimedean tiling (3, 4, 6, 4).

This page as a plain text file.
%I A249870 #28 Feb 28 2025 23:12:33
%S A249870 0,1,2,3,2,4,4,4,5,6,8,8,7,8,10,10,10,13,14,11,12,13,15,14,16,16,17,
%T A249870 16,19,20,22,19,20,20,24,23,21,25,22,23,28,26,26,28,31,28,32,28,28,30,
%U A249870 32,34,35,32,33,38,34,36,38,37,40,37,38,43,40,44,40,46
%N A249870 Rational parts of the Q(sqrt(3)) integers giving the square of the radii for lattice point circles for the Archimedean tiling (3, 4, 6, 4).
%C A249870 The irrational parts are given in A249871.
%C A249870 The points of the lattice of the Archimedean tiling (3, 4, 6, 4) lie on certain circles around any point. The length of the side of the regular 6-gon is taken as 1 (in some length unit).
%C A249870 The squares of the radii R2(n) of these circles are integers in the real quadratic number field Q(sqrt(3)), hence R2(n) = a(n) + A249871(n)*sqrt(3). The R2 sequence is sorted in increasing order.
%C A249870 For details see the notes given in a link.
%C A249870 This computation was inspired by a construction given by _Kival Ngaokrajang_ in A245094.
%H A249870 Wolfdieter Lang, <a href="/A249870/a249870_2.pdf">On lattice point circles for the Archimedean tiling (3, 4, 6, 4)</a>
%H A249870 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tiling_by_regular_polygons#Archimedean.2C_uniform_or_semiregular_tilings">Archimedean tilings</a>
%e A249870 The pairs [a(n), A249871(n)] for the squares of the radii R2(n) begin:
%e A249870 [0, 0], [1, 0], [2, 0], [3, 0], [2, 1], [4, 0], [4, 1], [4, 2], [5, 2], [6, 3], [8, 2], [8, 3], [7, 4], [8, 4], [10, 3], ...
%e A249870 The corresponding radii R(n) are (Maple 10 digits, if not an integer):
%e A249870 0, 1, 1.414213562, 1.732050808, 1.931851653, 2, 2.394170171, 2.732050808, 2.909312911, 3.346065215, 3.385867927, 3.632650881, 3.732050808, 3.863703305, 3.898224265 ...
%Y A249870 Cf. A249871, A251627, A251628.
%K A249870 nonn,easy
%O A249870 0,3
%A A249870 _Wolfdieter Lang_, Dec 06 2014