This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249875 #20 Dec 27 2023 15:48:17 %S A249875 3,6,34,136,498,2082,8146,32946,131058,524232,2096928,8387712, %T A249875 33550848,134226562,536859906,2147439624,8589943858,34359775432, %U A249875 137439101728,549756406912,2199022661826,8796090647304,35184374452498,140737497809992,562949943786834,2251799775147336 %N A249875 Numbers that are exactly halfway between the nearest square and the nearest power of 2. %C A249875 Numbers that are the arithmetic mean of the nearest square and the nearest power of 2 (other than that nearest square). %H A249875 Chai Wah Wu, <a href="/A249875/b249875.txt">Table of n, a(n) for n = 1..501</a> %e A249875 3 is a term because 2<3<4; 6 is a term because 4<6<8. %o A249875 (Python) %o A249875 def isqrt(a): %o A249875 sr = 1 << (a.bit_length() >> 1) %o A249875 while a < sr * sr: %o A249875 sr >>= 1 %o A249875 b = sr >> 1 %o A249875 while b: %o A249875 s = sr + b %o A249875 if a >= s * s: %o A249875 sr = s %o A249875 b >>= 1 %o A249875 return sr %o A249875 for j in range(99): %o A249875 i = 2**j %o A249875 r = isqrt(i) %o A249875 if r * r == i: %o A249875 continue %o A249875 if r & 1: %o A249875 a = ((r + 1) * (r + 1) + i) // 2 %o A249875 else: %o A249875 a = (i + r * r) // 2 %o A249875 print(a, end=', ') %o A249875 (Python) %o A249875 from gmpy2 import isqrt %o A249875 A249875_list, x = [], 1 %o A249875 for _ in range(10**3): %o A249875 A249875_list.append(2*sum(divmod(isqrt(2*x),2))**2+x) %o A249875 x *= 4 # _Chai Wah Wu_, Dec 16 2014 %Y A249875 Cf. A000290, A000079, A233074, A233075. %K A249875 nonn %O A249875 1,1 %A A249875 _Alex Ratushnyak_, Nov 07 2014