This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249893 #28 May 22 2025 10:21:41 %S A249893 2,25,256,256036,2560361612769,256036161276932002260000001, %T A249893 256036161276932002260000001607597862784080913990785121 %N A249893 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 2. %C A249893 a(12) has 1717 digits. - _Michael S. Branicky_, Feb 25 2021 %H A249893 Michael S. Branicky, <a href="/A249893/b249893.txt">Table of n, a(n) for n = 1..11</a> (terms 1..10 from Hiroaki Yamanouchi) %o A249893 (PARI) a(n)=k=n;s=1;while(s<5*10^7,if(s%10,if(s^2\(10^(#Str(s^2)-#Str(k)))==k,print1(s^2,", ");k=s^2));s++) %o A249893 a(2) %o A249893 (Python) %o A249893 def f(x): %o A249893 print(x,end=', ') %o A249893 n = x %o A249893 s = 1 %o A249893 while s < 10**7: %o A249893 if s % 10: %o A249893 S = str(s**2) %o A249893 if S.startswith(str(n)): %o A249893 print(s**2,end=', ') %o A249893 n = s**2 %o A249893 s += 1 %o A249893 f(2) %o A249893 (Python) %o A249893 from math import isqrt %o A249893 def anext(an): %o A249893 lo, hi = an*10, an*10 + 9 %o A249893 while True: %o A249893 found = False %o A249893 if isqrt(hi)**2 > lo: return (isqrt(lo)+1)**2 %o A249893 lo, hi = lo*10, hi*10 + 9 %o A249893 n, an = 1, 2 %o A249893 for n in range(2, 17): %o A249893 an = anext(an) %o A249893 print(n, an) # _Michael S. Branicky_, Feb 25 2021 %Y A249893 Cf. A048559, A048561. %K A249893 nonn,base %O A249893 1,1 %A A249893 _Derek Orr_, Nov 08 2014