This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249924 #41 Nov 12 2024 09:03:50 %S A249924 1,3,17,120,948,8022,71106,651717,6126175,58736535,572178165, %T A249924 5647102500,56345894052,567444190680,5760259701864,58879552102416, %U A249924 605508278430348,6260413541738610,65036607553643550,678530086525374930,7106457298203380370,74688269331406258260,787463653336202248380 %N A249924 G.f. A(x) satisfies: x = A(x) - 3*A(x)^2 + A(x)^3. %H A249924 Michael De Vlieger, <a href="/A249924/b249924.txt">Table of n, a(n) for n = 1..955</a> %H A249924 Elżbieta Liszewska and Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019. %F A249924 G.f.: Series_Reversion(x - 3*x^2 + x^3). %F A249924 G.f. A(x) satisfies: %F A249924 (1) 1/x = Sum_{n>=1} Fibonacci(2*n) * A(x)^(n-2). %F A249924 (2) 1+x = 2*(1-A(x)) - (1-A(x))^3. %F A249924 (3) 5+x = 10*(1+A(x)) - 6*(1+A(x))^2 + (1+A(x))^3. %F A249924 a(n) = (Sum_{k=0..n-1} binomial(n+k-1,k)*binomial(3*n+k-2,n-k-1))/n. - _Vladimir Kruchinin_, Mar 11 2015 %F A249924 a(n) = binomial(3*n-2,n-1)*hypergeom([1-n,3*n-1],[n+1/2],-1/4)/n. - _Peter Luschny_, Mar 11 2015 %F A249924 5*n*(n-1)*a(n) - 27*(n-1)*(2*n-3)*a(n-1) - 3*(3*n-5)*(3*n-7)*a(n-2) = 0. - _R. J. Mathar_, Jul 15 2017 %F A249924 a(n) ~ 3^(n - 3/4) * (9 + 4*sqrt(6))^(n - 1/2) / (2^(5/4) * sqrt(Pi) * n^(3/2) * 5^(n - 1/2)). - _Vaclav Kotesovec_, Aug 22 2017 %e A249924 G.f.: A(x) = x + 3*x^2 + 17*x^3 + 120*x^4 + 948*x^5 + 8022*x^6 + ... %e A249924 Related expansions. %e A249924 A(x)^2 = x^2 + 6*x^3 + 43*x^4 + 342*x^5 + 2905*x^6 + 25812*x^7 + ... %e A249924 A(x)^3 = x^3 + 9*x^4 + 78*x^5 + 693*x^6 + 6330*x^7 + 59211*x^8 + ... %e A249924 where x = A(x) - 3*A(x)^2 + A(x)^3. %e A249924 Also, the g.f. satisfies: %e A249924 1/x = 1/A(x) + 3 + 8*A(x) + 21*A(x)^2 + 55*A(x)^3 + 144*A(x)^4 + 377*A(x)^5 + 987*A(x)^6 + ... + Fibonacci(2*n) * A(x)^(n-2) + ... %p A249924 a := n -> binomial(3*n-2,n-1)*hypergeom([1-n,3*n-1], [n+1/2],-1/4)/n: %p A249924 seq(simplify(a(n)), n=1..23); # _Peter Luschny_, Mar 11 2015 %t A249924 a[n_] := Sum[Binomial[n+k-1, k]*Binomial[3*n+k-2, n-k-1], {k, 0, n-1}]/n; Array[a, 30] (* _Jean-François Alcover_, Mar 11 2015, after _Vladimir Kruchinin_ *) %t A249924 Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 + x^3, {x, 0, 20}], x],x]] (* _Vaclav Kotesovec_, Aug 22 2017 *) %o A249924 (PARI) {a(n)=polcoeff(serreverse(x - 3*x^2 + x^3 + x^2*O(x^n)), n)} %o A249924 for(n=1, 30, print1(a(n), ", ")) %o A249924 (Maxima) %o A249924 a(n):=sum(binomial(n+k-1,k)*binomial(3*n+k-2,n-k-1),k,0,n-1)/n; /* _Vladimir Kruchinin_, Mar 11 2015 */ %K A249924 nonn %O A249924 1,2 %A A249924 _Paul D. Hanna_, Nov 28 2014