This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249927 #6 Feb 07 2025 14:37:51 %S A249927 1,1,4,40,485,6585,95732,1457636,22947585,370494965,6101028934, %T A249927 102074877086,1730213141683,29649526507055,512810063004600, %U A249927 8940267160930408,156944360941491106,2771866193105829798,49218079130561578390,878107603236732844610,15733529061871743649380 %N A249927 G.f. A(x) satisfies: 1+x = 2*A(x)^3 - A(x)^5. %F A249927 G.f.: 1 + Series_Reversion(x - 4*x^2 - 8*x^3 - 5*x^4 - x^5). %e A249927 G.f.: A(x) = 1 + x + 4*x^2 + 40*x^3 + 485*x^4 + 6585*x^5 + 95732*x^6 +... %e A249927 Related expansions. %e A249927 A(x)^3 = 1 + 3*x + 15*x^2 + 145*x^3 + 1755*x^4 + 23793*x^5 +... %e A249927 A(x)^5 = 1 + 5*x + 30*x^2 + 290*x^3 + 3510*x^4 + 47586*x^5 +... %e A249927 where 1+x = 2*A(x)^3 - A(x)^5. %o A249927 (PARI) /* From 1+x = 2*A(x)^3 - A(x)^5: */ %o A249927 {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(2*Ser(A)^3-Ser(A)^5)[#A]); A[n+1]} %o A249927 for(n=0, 25, print1(a(n) , ", ")) %o A249927 (PARI) /* From Series Reversion: */ %o A249927 {a(n)=local(A=1+serreverse(x - 4*x^2 - 8*x^3 - 5*x^4 - x^5 + x^2*O(x^n)));polcoeff(A,n)} %o A249927 for(n=0, 25, print1(a(n) , ", ")) %Y A249927 Cf. A249926, A249928, A249929, A249930, A249931, A249932. %K A249927 nonn %O A249927 0,3 %A A249927 _Paul D. Hanna_, Nov 27 2014